Suppr超能文献

一种应用于使用非线性电动振动台进行人为诱导力重建的迭代神经网络方法。

An iterative neural network approach applied to human-induced force reconstruction using a non-linear electrodynamic shaker.

作者信息

Peláez-Rodríguez César, Magdaleno Álvaro, García Terán José María, Pérez-Aracil Jorge, Salcedo-Sanz Sancho, Lorenzana Antolín

机构信息

Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.

ITAP, Escuela de Ingenierías Industriales, Universidad de Valladolid, P.º del Cauce, 59, 47011 Valladolid, Spain.

出版信息

Heliyon. 2024 Jun 17;10(12):e32858. doi: 10.1016/j.heliyon.2024.e32858. eCollection 2024 Jun 30.

Abstract

Human-induced force analysis plays an important role across a wide range of disciplines, including biomechanics, sport engineering, health monitoring or structural engineering. Specifically, this paper focuses on the replication of ground reaction forces (GRF) generated by humans during movement. They can provide critical information about human-mechanics and be used to optimize athletic performance, prevent and rehabilitate injuries and assess structural vibrations in engineering applications. It is presented an experimental approach that uses an electrodynamic shaker (APS 400) to replicate GRFs generated by humans during movement, with a high degree of accuracy. Successful force reconstruction implies a high fidelity in signal reproduction with the electrodynamic shaker, which leads to an inverse problem, where a reference signal must be replicated with a nonlinear and non-invertible system. The solution presented in this paper relies on the development of an iterative neural network and an inversion-free approach, which aims to generate the most effective drive signal that minimizes the error between the experimental force signal exerted by the shaker and the reference. After the optimization process, the weights of the neural network are updated to make the shaker behave as desired, achieving excellent results in both time and frequency domains.

摘要

人为力分析在广泛的学科领域中发挥着重要作用,包括生物力学、运动工程学、健康监测或结构工程学。具体而言,本文重点关注人类在运动过程中产生的地面反作用力(GRF)的复制。这些力可以提供有关人体力学的关键信息,并用于优化运动表现、预防和康复损伤以及评估工程应用中的结构振动。本文提出了一种实验方法,该方法使用电动振动台(APS 400)以高精度复制人类在运动过程中产生的GRF。成功的力重建意味着电动振动台在信号再现方面具有高保真度,这导致了一个逆问题,即必须用一个非线性且不可逆的系统来复制参考信号。本文提出的解决方案依赖于迭代神经网络的开发和无反演方法,其目的是生成最有效的驱动信号,以最小化振动台施加的实验力信号与参考信号之间的误差。在优化过程之后,神经网络的权重被更新,以使振动台按预期运行,在时域和频域均取得了优异的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2926/11239580/04644391d261/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验