Derme Tiziano, Schwarze Francis W M R, Dillenburger Benjamin
ETH Zurich ITA-Institut für Technologie in der Architektur Stefano-Franscini Platz 1 Zurich CH-8093 Switzerland.
Empa Lerchenfeldstrasse 5 St. Gallen CH-9014 Switzerland.
Glob Chall. 2024 May 30;8(7):2300197. doi: 10.1002/gch2.202300197. eCollection 2024 Jul.
The architecture, engineering, and construction industry is undergoing a significant shift, steering buildings away from resource-intensive processes toward becoming instruments for climate mitigation. In this transformative landscape, integrating circular bio-based alternatives and reducing emissions through biotechnological and enzymatic processes have significant potential. Specifically, mycelium-bound composites have emerged as renewable alternatives for new materials and added-value wood products. Despite their numerous advantages, integrating these materials into current engineering practices presents challenges deriving from the complex nature of the material´s production process and the transfer from the laboratory to the industrial scale. In this regard, the design and engineering of novel controlled environments are fundamental in maintaining optimal growth conditions during material production. This, in turn, influences the overall material performance and potential use in construction.
建筑、工程和施工行业正在经历重大转变,使建筑从资源密集型流程转向成为缓解气候的工具。在这一变革性的格局中,整合基于生物的循环替代方案并通过生物技术和酶促过程减少排放具有巨大潜力。具体而言,菌丝体结合复合材料已成为新型材料和高附加值木制品的可再生替代品。尽管它们有诸多优点,但将这些材料融入当前的工程实践中仍面临挑战,这些挑战源于材料生产过程的复杂性以及从实验室规模向工业规模的转化。在这方面,新型可控环境的设计和工程对于在材料生产过程中维持最佳生长条件至关重要。这进而会影响材料的整体性能以及在建筑中的潜在用途。