Kaiser Romy, Bridgens Ben, Elsacker Elise, Scott Jane
Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom.
Department of Bioengineering Sciences, Research Group of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium.
Front Bioeng Biotechnol. 2023 Jul 14;11:1229693. doi: 10.3389/fbioe.2023.1229693. eCollection 2023.
This paper presents significant advances in mycelium biofabrication using permanent knitted textile formwork and a new substrate formulation to dramatically improve the mechanical properties of mycelium-textile biocomposites suitable for large-scale components for use in construction. The paper outlines the biofabrication process, detailing the composition of , a viscous mycelium substrate developed for use with permanent knitted formwork, and the injection process required to regulate the filling of slender tubes of fabric with mycocrete. The use of a permanent integrated knitted formwork shows promise as a composite system for use with mycelium to improve mechanical performance and enable complex shapes to be fabricated for lightweight construction. Results of mechanical testing show dramatic improvements in tensile, compressive and flexural strength and stiffness compared to conventional mycelium composites. The testing demonstrates the importance of both the mycocrete paste recipe and the knitted textile formwork. In addition, the paper highlights the advantages of the proposed biofabrication system with reference to the prototype: a 1.8 m high freestanding arched dome composed of very slender biohybrid knit-mycelium tubes. This prototype demonstrates the opportunity to utilize the potential for lightweight construction and complex form offered by a textile formwork with low environmental impact mycelium biomaterials. The combination of textiles and mycelium present a compelling new class of textile biohybrid composite materials for new applications within the construction sector.
本文介绍了利用永久性针织织物模板和新型基质配方进行菌丝体生物制造的重大进展,以显著改善菌丝体-织物生物复合材料的机械性能,使其适用于建筑领域的大型构件。本文概述了生物制造过程,详细介绍了一种为与永久性针织模板配合使用而开发的粘性菌丝体基质的成分,以及用菌丝混凝土填充细长织物管所需的注入过程。使用永久性集成针织模板作为与菌丝体配合使用的复合系统,有望提高机械性能,并能够制造出用于轻型建筑的复杂形状。机械测试结果表明,与传统的菌丝体复合材料相比,其拉伸、压缩和弯曲强度及刚度都有显著提高。测试证明了菌丝混凝土浆料配方和针织织物模板的重要性。此外,本文还参照一个原型突出了所提出的生物制造系统的优势:一个由非常细长的生物杂交针织-菌丝体管组成的1.8米高的独立拱形穹顶。该原型展示了利用具有低环境影响的菌丝体生物材料的织物模板提供的轻型建筑和复杂形状潜力的机会。纺织品和菌丝体的结合为建筑领域的新应用呈现了一类引人注目的新型纺织生物杂交复合材料。