Suppr超能文献

良性阵发性位置性眩晕的危险因素及列线图预测模型的构建

Risk factors for benign paroxysmal positional vertigo and construction of a nomogram predictive model.

作者信息

Cao Wenping, Geng Yang, Chang Jun, Li Feifei

机构信息

Department of Otolaryngology, Zibo Central Hospital Zibo 255000, Shandong, China.

Operating Room, Zibo Central Hospital Zibo 255000, Shandong, China.

出版信息

Am J Transl Res. 2024 Jun 15;16(6):2435-2444. doi: 10.62347/DHAJ4799. eCollection 2024.

Abstract

BACKGROUND

To analyze the risk factors for benign paroxysmal positional vertigo (BPPV) and to construct a predictive nomogram model.

METHODS

In this retrospective study, 312 participants were enrolled, including 164 BPPV patients and 148 healthy subjects without BPPV. Risk predictors for BPPV were identified using univariate and multivariate analyses, and a clinical nomogram was constructed. The predictive accuracy was assessed by unadjusted concordance index (C-index) and calibration plot.

RESULTS

Univariate and multivariate regression analysis identified stroke (95% CI, 0.575-5.954; P=0.022), hyperlipidemia (95% CI, 0.471-4.647; P=0.003), chronic suppurative otitis media (95% CI, 1.222-45.528; P=0.005), cervical spondylosis (95% CI, 1.232-3.017; P=0.005), and osteoporosis (95% CI, 1.130-3.071; P=0.001) were the independent risk factors for BPPV. These risk factors were used to construct a clinical predictive nomogram. The regression equation was: logit (P) = -6.820 + 0.450 * stroke + hyperlipidemia * 0.312 + chronic suppurative otitis media * 0.499 + cervical spondylosis * 0.916 + osteoporosis * 0.628. The calibration curves demonstrated excellent accuracy of the predictive nomogram. Decision curve analysis showed that the predictive model is clinically applicable when the threshold probability was between 20% and 60%.

CONCLUSIONS

Stroke, hyperlipidemia, chronic suppurative otitis media, cervical spondylosis and osteoporosis are independent risk predictors for BPPV. The developed nomogram is useful in predicting the risk of BPPV.

摘要

背景

分析良性阵发性位置性眩晕(BPPV)的危险因素并构建预测列线图模型。

方法

在这项回顾性研究中,纳入了312名参与者,包括164例BPPV患者和148名无BPPV的健康受试者。通过单因素和多因素分析确定BPPV的风险预测因素,并构建临床列线图。通过未调整的一致性指数(C指数)和校准图评估预测准确性。

结果

单因素和多因素回归分析确定中风(95%CI,0.575 - 5.954;P = 0.022)、高脂血症(95%CI,0.471 - 4.647;P = 0.003)、慢性化脓性中耳炎(95%CI,1.222 - 45.528;P = 0.005)、颈椎病(95%CI,1.232 - 3.017;P = 0.005)和骨质疏松症(95%CI,1.130 - 3.071;P = 0.001)是BPPV的独立危险因素。这些危险因素用于构建临床预测列线图。回归方程为:logit(P)= -6.820 + 0.450×中风 + 高脂血症×0.312 + 慢性化脓性中耳炎×0.499 + 颈椎病×0.916 + 骨质疏松症×0.628。校准曲线显示预测列线图具有出色的准确性。决策曲线分析表明,当阈值概率在20%至60%之间时,预测模型具有临床适用性。

结论

中风、高脂血症、慢性化脓性中耳炎、颈椎病和骨质疏松症是BPPV的独立风险预测因素。所开发的列线图有助于预测BPPV的风险。

相似文献

本文引用的文献

7
Benign paroxysmal positional vertigo.良性阵发性位置性眩晕。
Auris Nasus Larynx. 2022 Oct;49(5):737-747. doi: 10.1016/j.anl.2022.03.012. Epub 2022 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验