Ren Hang, Xu Su, Lyu Zhidong, Li Yuanzhen, Yang Zuomin, Xu Quan, Yu Yong-Sen, Li Yanfeng, Gao Fei, Yu Xianbin, Han Jiaguang, Chen Qi-Dai, Sun Hong-Bo
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
Natl Sci Rev. 2024 Mar 23;11(8):nwae116. doi: 10.1093/nsr/nwae116. eCollection 2024 Aug.
Flexible multiplexing chips that permit reconfigurable multidimensional channel utilization are indispensable for revolutionary 6G terahertz communications, but the insufficient manipulation capability of terahertz waves prevents their practical implementation. Herein, we propose the first experimental demonstration of a flexible multiplexing chip for terahertz communication by revealing the unique mechanism of topological phase (TP) transition and perseveration in a heterogeneously coupled bilayer valley Hall topological photonic system. The synthetic and individual TPs operated in the coupled and decoupled states enable controllable on-chip modular TP transitions and subchannel switching. Two time-frequency interleaved subchannels support 10- and 12-Gbit/s QAM-16 high-speed data streams along corresponding paths over carriers of 120 and 130 GHz with 2.5- and 3-GHz bandwidths, respectively. This work unlocks interlayer heterogeneous TPs for inspiring ingenious on-chip terahertz-wave regulation, allowing functionality-reconfigurable, compactly integrated and CMOS-compatible chips.
对于具有革命性的6G太赫兹通信而言,允许可重构多维信道利用的灵活复用芯片不可或缺,但太赫兹波的操纵能力不足阻碍了它们的实际应用。在此,我们通过揭示异质耦合双层谷霍尔拓扑光子系统中拓扑相(TP)转变和保留的独特机制,首次对用于太赫兹通信的灵活复用芯片进行了实验演示。在耦合和解耦状态下运行的合成和单个TP实现了可控的片上模块化TP转变和子信道切换。两个时频交织子信道分别在120和130GHz载波上,以2.5和3GHz带宽,沿着相应路径支持10Gbit/s和12Gbit/s的QAM-16高速数据流。这项工作开启了层间异质TP,以激发巧妙的片上太赫兹波调控,从而实现功能可重构、紧凑集成且与CMOS兼容的芯片。