Ji Haocheng, Wang Junxiong, Qu Haotian, Li Junfeng, Ji Wenhai, Qiu Xiao, Zhu Yanfei, Ren Hengyu, Shi Ruyu, Ji Guanjun, Zhao Wenguang, Zhou Guangmin
Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Adv Mater. 2024 Sep;36(36):e2407029. doi: 10.1002/adma.202407029. Epub 2024 Jul 15.
Facing the resource and environmental pressures brought by the retiring wave of lithium-ion batteries (LIBs), direct recycling methods are considered to be the next generation's solution. However, the contradiction between limited battery life and the demand for rapidly iterating technology forces the direct recovery paradigm to shift toward "direct upcycling." Herein, a closed-loop direct upcycling strategy that converts waste current collector debris into dopants is proposed, and a highly inclusive eutectic molten salt system is utilized to repair structural defects in degraded polycrystalline LiNiCoMnO cathodes while achieving single-crystallization transformation and introducing Al/Cu dual-doping. Upcycled materials can effectively overcome the two key challenges at high voltages: strain accumulation and lattice oxygen evolution. It exhibits comprehensive electrochemical performance far superior to commercial materials at 4.6 V, especially its fast charging capability at 15 C, and an impressive 91.1% capacity retention after 200 cycles in a 1.2 Ah pouch cell. Importantly, this approach demonstrates broad applicability to various spent layered cathodes, particularly showcasing its value in the recycling of mixed spent cathodes. This work effectively bridges the gap between waste management and material performance enhancement, offering a sustainable path for the recycling of spent LIBs and the production of next-generation high-voltage cathodes.
面对锂离子电池(LIBs)退役浪潮带来的资源和环境压力,直接回收方法被认为是下一代解决方案。然而,有限的电池寿命与快速迭代技术需求之间的矛盾迫使直接回收模式向“直接升级回收”转变。在此,提出了一种将废集流体碎片转化为掺杂剂的闭环直接升级回收策略,并利用一种高度包容性的共晶熔盐体系修复降解多晶LiNiCoMnO正极中的结构缺陷,同时实现单晶化转变并引入Al/Cu双掺杂。升级回收后的材料能够有效克服高电压下的两个关键挑战:应变积累和晶格氧析出。在4.6 V时,它展现出远优于商业材料的综合电化学性能,尤其是在15 C下的快速充电能力,并且在1.2 Ah软包电池中循环200次后容量保持率高达91.1%。重要的是,这种方法对各种废旧层状正极都具有广泛适用性,尤其在混合废旧正极回收方面展现出其价值。这项工作有效地弥合了废物管理与材料性能提升之间的差距,为废旧LIBs的回收利用以及下一代高压正极的生产提供了一条可持续的途径。