Group of Data Modeling, Computational Biology and Applied Mathematics, École Normale Supérieure - Université PSL, 75005 Paris, France.
Department of Applied Mathematics and Theoretical Physics and Churchill College, University of Cambridge, Cambridge CB3 0WA, United Kingdom.
J Chem Phys. 2024 Jul 21;161(3). doi: 10.1063/5.0215900.
Voltage distribution in sub-cellular micro-domains such as neuronal synapses, small protrusions, or dendritic spines regulates the opening and closing of ionic channels, energy production, and thus, cellular homeostasis and excitability. Yet how voltage changes at such a small scale in vivo remains challenging due to the experimental diffraction limit, large signal fluctuations, and the still limited resolution of fast voltage indicators. Here, we study the voltage distribution in nano-compartments using a computational approach based on the Poisson-Nernst-Planck equations for the electro-diffusion motion of ions, where inward and outward fluxes are generated between channels. We report a current-voltage (I-V) logarithmic relationship generalizing Nernst law that reveals how the local membrane curvature modulates the voltage. We further find that an influx current penetrating a cellular electrolyte can lead to perturbations from tens to hundreds of nanometers deep, depending on the local channel organization. Finally, we show that the neck resistance of dendritic spines can be completely shunted by the transporters located on the head boundary, facilitating ionic flow. To conclude, we propose that voltage is regulated at a subcellular level by channel organization, membrane curvature, and narrow passages.
亚细胞微域(如神经元突触、小突起或树突棘)中的电压分布调节离子通道的开启和关闭、能量产生,从而调节细胞内的稳态和兴奋性。然而,由于实验的衍射极限、大信号波动以及快速电压指示剂的分辨率仍然有限,体内如此小尺度的电压变化仍然具有挑战性。在这里,我们使用基于泊松-纳斯特-普朗克方程的计算方法研究纳米隔间中的电压分布,该方法用于离子的电扩散运动,其中在通道之间产生内向和外向通量。我们报告了电流-电压(I-V)对数关系,它概括了能斯特定律,揭示了局部膜曲率如何调制电压。我们还发现,渗透细胞电解质的入流电流会导致几十到几百纳米的深度的波动,具体取决于局部通道组织。最后,我们表明,位于头部边界的转运蛋白可以完全旁路树突棘的颈部电阻,从而促进离子流动。总之,我们提出电压通过通道组织、膜曲率和狭窄通道在亚细胞水平上进行调节。