Cartailler J, Holcman D
Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
J Math Biol. 2019 Jul;79(1):155-185. doi: 10.1007/s00285-019-01353-4. Epub 2019 Apr 9.
We study here the bulk electro-diffusion properties of micro- and nanodomains containing a cusp-shaped structure in three-dimensions when the cation concentration dominates over the anions. To determine the consequences on the voltage distribution, we use the steady-state Poisson-Nernst-Planck equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic approximation for certain surface charge distribution that agree with numerical simulations. Finally, we analyze the consequences of several piecewise constant non-homogeneous surface charge densities, motivated by designing new nanopipettes. To conclude, when electro-neutrality is broken at the scale of hundreds of nanometers, the geometry of cusp-shaped domains influences the voltage profile, specifically inside the cusp structure. The main results are summarized in the form of new three-dimensional electrostatic laws for non-electroneutral electrolytes. These formula provide a refined characterization of voltage distribution at steady-state in neuronal microdomains such as dendritic spines, but can also be used to design nanometric patch-pipettes.
我们在此研究当阳离子浓度高于阴离子浓度时,三维空间中包含尖状结构的微区和纳米区的体电扩散特性。为了确定对电压分布的影响,我们使用带有电荷数积分约束的稳态泊松 - 能斯特 - 普朗克方程。在边界上施加非齐次诺伊曼边界条件。我们针对与数值模拟相符的特定表面电荷分布构建渐近近似。最后,受新型纳米移液器设计的启发,我们分析了几种分段常数非齐次表面电荷密度的影响。总之,当在数百纳米尺度上打破电中性时,尖状区域的几何形状会影响电压分布,特别是在尖状结构内部。主要结果以非电中性电解质的新三维静电定律的形式总结。这些公式为神经元微区(如树突棘)稳态下的电压分布提供了精细表征,也可用于设计纳米级膜片移液器。