Suppr超能文献

用概念贝叶斯网络检验现场干预效果和不确定性:防止 DNAPL 和受污染地下水的场外迁移。

Examining site intervention efficacy and uncertainties with conceptual Bayesian networks: preventing offsite migration of DNAPL and contaminated groundwater.

机构信息

Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, US Environmental Protection Agency, Cincinnati, OH, USA.

Office of Research and Development, Center for Environmental Solutions and Emergency Response, Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Ada, OK, USA.

出版信息

Environ Sci Pollut Res Int. 2024 Jul;31(35):47742-47756. doi: 10.1007/s11356-024-34340-4. Epub 2024 Jul 15.

Abstract

For contaminated sites, conceptual site models (CSMs) guide the assessment and management of risks, including remediation strategies. Recent research has expanded diagrammatic CSMs with structural causal modeling to develop what are nominally called conceptual Bayesian networks (CBNs) for environmental risk assessment. These CBNs may also be useful for problems of controlling and preventing offsite contaminant migration, especially for sites containing dense nonaqueous phase liquids (DNAPLs). In particular, the CBNs provide greater clarity on the causal relationships between source term, onsite and offsite migration, and remediation effectiveness characterization for contaminated DNAPL sites compared to traditional CSMs. These ideas are demonstrated by the inclusion of modifying variables, causal pathway analysis, and interventions in CBNs. Additionally, several new extensions of the CBN concept are explored including the representation of measurement variables as lines of evidence and alignment with conventional pictorial CSMs for groundwater modeling. Taken as a whole, the CBNs provide a powerful and adaptable knowledge representation tool for remediating subsurface systems contaminated by DNAPL.

摘要

对于污染场地,概念性场地模型(CSM)指导风险评估和管理,包括修复策略。最近的研究通过结构因果建模扩展了图表式 CSM,以开发名义上称为环境风险评估的概念性贝叶斯网络(CBN)。这些 CBN 对于控制和防止场外污染物迁移的问题也可能有用,特别是对于含有密集非水相液体(DNAPL)的场地。特别是,与传统的 CSM 相比,CBN 更清楚地说明了源项、场内和场外迁移以及受污染的 DNAPL 场地修复效果的因果关系。通过在 CBN 中包含修正变量、因果路径分析和干预措施,可以证明这些想法。此外,还探讨了 CBN 概念的几个新扩展,包括将测量变量表示为证据线,并与地下水建模的传统图示 CSM 对齐。总的来说,CBN 为修复受 DNAPL 污染的地下系统提供了一种强大且适应性强的知识表示工具。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验