Suppr超能文献

评估 WRF-Chem 空气质量预报在 AEROMMA 和 STAQS 2023 实地考察期间的表现。

Evaluation of WRF-Chem air quality forecasts during the AEROMMA and STAQS 2023 field campaigns.

机构信息

Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

J Air Waste Manag Assoc. 2024 Nov;74(11):783-803. doi: 10.1080/10962247.2024.2380333. Epub 2024 Aug 21.

Abstract

A real-time air quality forecasting system was developed using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to provide support for flight planning activities during the NOAA Atmospheric Emissions and Reactions Observed from Megacities to Marine Areas (AEROMMA) and NASA Synergistic TEMPO Air Quality Science (STAQS) 2023 field campaigns. The forecasting system operated on two separate domains centered on Chicago, IL, and New York City, NY, and provided 72-hour predictions of atmospheric composition, aerosols, and clouds. This study evaluates the Chicago-centered forecasting system's 1-, 2-, and 3-day ozone (O) forecast skill for Chiwaukee Prairie, WI, a rural area downwind of Chicago that often experiences high levels of O pollution. Comparisons to vertical O profiles collected by a Tropospheric Ozone Lidar Network (TOLNet) instrument revealed that forecast skill decreases as forecast lead time increases. When compared to surface measurements, the forecasting system tended to underestimate O concentrations on high O days and overestimate on low O days at Chiwaukee Prairie regardless of forecast lead time. Using July 25, 2023, as a case study, analyses show that the forecasts underestimated peak O levels at Chiwaukee Prairie during this regionwide bad air quality day. Wind speed and direction data indicates that this underestimation can partially be attributed to lake breeze simulation errors. Surface fine particulate matter (PM) measurements, Geostationary Operational Environmental Satellite-16 (GOES-16) aerosol optical depth (AOD) data, and back trajectories from the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model show that transported Canadian wildfire smoke impacted the Lake Michigan region on this day. Errors in the forecasted chemical composition and transport of the smoke plumes also contributed to underpredictions of O levels at Chiwaukee Prairie on July 25, 2023. The results of this work help identify improvements that can be made for future iterations of the WRF-Chem forecasting system.: Air quality forecasting is an important tool that can be used to inform the public about upcoming high pollution days so that individuals may plan accordingly to limit their exposure to health-damaging air pollutants. Forecasting also helps scientists make decisions about where to make observations during air quality field campaigns. A variety of observational datasets were used to evaluate the accuracy of an air quality forecasting system that was developed for NOAA and NASA field campaigns that occurred in the summer of 2023. These evaluations inform areas of improvement for future development of this air quality forecasting system.

摘要

建立了一个实时空气质量预测系统,该系统使用天气研究和预报模型与化学模型(WRF-Chem)相结合,为美国国家海洋和大气管理局大气排放和反应观测到的大城市到海洋地区(AEROMMA)和美国宇航局协同 TEMPO 空气质量科学(STAQS)2023 年实地考察活动的飞行计划提供支持。该预测系统在两个以芝加哥和纽约为中心的独立域上运行,并提供了 72 小时的大气成分、气溶胶和云的预测。本研究评估了以芝加哥为中心的预测系统对威斯康星州 Chiwaukee Prairie 的 1、2 和 3 天臭氧(O)预测技能,该地区是芝加哥下风处的农村地区,经常受到高水平的 O 污染。与对流层臭氧激光雷达网络(TOLNet)仪器收集的垂直 O 廓线的比较表明,随着预测提前期的增加,预测技能会降低。无论预测提前期如何,与地面测量相比,该预测系统在 Chiwaukee Prairie 往往会低估高 O 日的 O 浓度,高估低 O 日的 O 浓度。以 2023 年 7 月 25 日为例进行分析,结果表明,在该地区空气质量差的日子里,预测系统低估了 Chiwaukee Prairie 的峰值 O 水平。风速和风向数据表明,这种低估部分归因于湖风模拟错误。地面细颗粒物(PM)测量值、地球静止业务环境卫星-16(GOES-16)气溶胶光学深度(AOD)数据以及美国国家海洋和大气管理局混合单粒子拉格朗日综合轨迹(HYSPLIT)模型的后轨迹表明,在这一天,运输的加拿大野火烟雾影响了密歇根湖地区。预测的烟雾羽流化学成分和传输中的错误也导致了 2023 年 7 月 25 日 Chiwaukee Prairie 地区 O 水平的预测不足。这项工作的结果有助于确定可以为 WRF-Chem 预测系统的未来迭代做出的改进:空气质量预测是一种重要的工具,可用于告知公众即将到来的高污染日,以便个人可以相应地计划以限制他们接触到对健康有害的空气污染物。预测还有助于科学家决定在空气质量实地考察期间在哪里进行观测。使用了各种观测数据集来评估为 2023 年夏天举行的美国国家海洋和大气管理局和美国宇航局实地考察活动开发的空气质量预测系统的准确性。这些评估为未来空气质量预测系统的开发提供了改进的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验