Song Yong-Jie, Xie Li-Xia, Sang Ya-Li, Zhang Yu-Hong, Li Zi-Feng, Li Gang
College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, PR China.
J Colloid Interface Sci. 2024 Nov 15;674:1058-1070. doi: 10.1016/j.jcis.2024.07.086. Epub 2024 Jul 14.
Recently, the utilization of hydrogen-bonded organic frameworks (HOFs) with high crystallinity and inherent well-defined H-bonding networks in the field of proton conduction has received increasing attention, but obtaining HOFs with excellent water stability and prominent proton conductivity (σ) remains challenging. Herein, by employing functionalized terephthalic acids, 2,5-dihydroxyterephthalic acid, 2-hydroxyterephthalic acid, 2-nitro terephthalic acid, and terephthalic acid, respectively, four highly water-stable ionic HOFs (iHOFs), [(CHO)(MeNH)]∙2HO (iHOF 1), [(CHO)(MeNH)] (iHOF 2), [(CHNO)(MeNH)] (iHOF 3) and [(CHO)(MeNH)] (iHOF 4) were efficiently prepared by a straightforward synthesis approach in DMF and HO solutions. The alternating-current (AC) impedance testing in humid conditions revealed that all four iHOFs were temperature- and humidity-dependent σ, with the greatest value reaching 10 S·cm. As expected, the high density of free carboxylic acid groups, crystallization water, and protonated [MeNH] units offer adequate protons and hydrophilic environments for effective proton transport. Furthermore, the σ values of these iHOFs with different functional groups were compared. It was discovered that it dropped in the following order under 100 °C and 98 % relative humidity (RH): σ iHOF 1 (1.72 × 10 S·cm) > σ iHOF 2 (4.03 × 10 S·cm) > σ iHOF 3 (1.46 × 10 S·cm) > σ iHOF 4 (4.86 × 10 S·cm). Finally, we investigated the causes of the above differences and the proton transport mechanism inside the framework using crystal structure data, water contact angle tests, and activation energy values. This study provides new motivation to develop highly proton-conductive materials.
近年来,具有高结晶度和固有明确氢键网络的氢键有机框架(HOFs)在质子传导领域的应用受到越来越多的关注,但获得具有优异水稳定性和突出质子传导率(σ)的HOFs仍然具有挑战性。在此,分别使用功能化对苯二甲酸、2,5-二羟基对苯二甲酸、2-羟基对苯二甲酸、2-硝基对苯二甲酸和对苯二甲酸,通过在N,N-二甲基甲酰胺(DMF)和水(HO)溶液中采用直接合成方法,高效制备了四种高度水稳定的离子型HOFs(iHOFs),[(CHO)(MeNH)]∙2HO(iHOF 1)、[(CHO)(MeNH)](iHOF 2)、[(CHNO)(MeNH)](iHOF 3)和[(CHO)(MeNH)](iHOF 4)。在潮湿条件下的交流(AC)阻抗测试表明,所有四种iHOFs的σ均与温度和湿度有关,最大值达到10 S·cm。正如预期的那样,高密度的游离羧酸基团、结晶水和质子化的[MeNH]单元为有效的质子传输提供了充足的质子和亲水环境。此外,比较了这些具有不同官能团的iHOFs的σ值。发现在100°C和98%相对湿度(RH)下,其顺序如下:σ iHOF 1(1.72×10 S·cm)>σ iHOF 2(4.03×10 S·cm)>σ iHOF 3(1.46×10 S·cm)>σ iHOF 4(4.86×10 S·cm)。最后,我们使用晶体结构数据、水接触角测试和活化能值研究了上述差异的原因以及框架内的质子传输机制。这项研究为开发高质子传导材料提供了新的动力。