Suppr超能文献

通过工程化酵母 Candida famata 在木质纤维素水解物上过量生产核黄素。

Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata.

机构信息

Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov St., 14/16, 79005 Lviv, Ukraine.

Institute of Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.

出版信息

FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae020.

Abstract

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.

摘要

木质纤维素(干植物生物质)是农业和木材工业中丰富且廉价的不可食用残余物,具有作为生物技术过程原料的巨大潜力。木质纤维素基质可以作为发酵过程中的有价值资源,允许生产广泛的化学品、燃料和食品添加剂。将木质纤维素水解物有效地转化为目标产物的主要障碍是戊糖(木糖和 L-阿拉伯糖)的代谢不良,戊糖是仅次于葡萄糖的木质纤维素中第二和第三丰富的糖。我们研究了黄色产色酵母 Candida famata 中核黄素的过度合成,发现所有主要的木质纤维素糖,包括木糖和 L-阿拉伯糖,都支持 C. famata 的可用菌株的强劲生长和核黄素合成。为了进一步提高木糖和木质纤维素水解物的核黄素产量,过表达编码木糖还原酶和木糖醇脱氢酶的基因 XYL1 和 XYL2。在用稀释的水解物进行摇瓶和生物反应器实验时,所得菌株的核黄素产量均增加,达到 1.5 g/L。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6930/11283204/8685a0a5ddc0/foae020fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验