Imamura Kosuke, Yokogawa Daisuke, Sato Hirofumi
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
Graduate School of Arts and Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
J Phys Chem Lett. 2024 Jul 25;15(29):7473-7481. doi: 10.1021/acs.jpclett.4c00948. Epub 2024 Jul 15.
A method for computing spin-spin coupling constants (SSCCs) using the reference interaction site model self-consistent field with constrained spatial electron density (RISM-SCF-cSED) is proposed for the first time. Describing solvents using integral equation theory allows us to reflect solvent effects at atomic resolution in SSCCs while accounting for thermal fluctuations at a low computational cost. Applying the method to water, 1,1-difluoroethylene, and 1-methylaminomethylene-2-naphthalenone revealed that the solvent shift was evaluated to a greater extent than in the continuum solvent model. The origin of this phenomenon was analyzed in terms of the physical mechanisms underlying SSCCs.
首次提出了一种使用具有受限空间电子密度的参考相互作用位点模型自洽场(RISM-SCF-cSED)来计算自旋-自旋耦合常数(SSCCs)的方法。使用积分方程理论描述溶剂,使我们能够在考虑热涨落的同时,以较低的计算成本在原子分辨率下反映SSCCs中的溶剂效应。将该方法应用于水、1,1-二氟乙烯和1-甲基氨基亚甲基-2-萘酮,结果表明,与连续介质溶剂模型相比,该方法对溶剂位移的评估程度更高。根据SSCCs的物理机制对这一现象的起源进行了分析。