Suppr超能文献

痕量金属(类)混合物对水生生物的毒性作用。

Toxic effects of trace metal(loid) mixtures on aquatic organisms.

机构信息

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.

School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.

出版信息

Sci Total Environ. 2024 Oct 20;948:174677. doi: 10.1016/j.scitotenv.2024.174677. Epub 2024 Jul 14.

Abstract

The co-occurrence of metal (loid)s in realistic aquatic environments necessitates the evaluation of their combined effects. However, the generality of the additive effect hypothesis is contentious, particularly due to metal(loid)-metal(loid) interactions. The absence of systematic evaluation approaches restricts our ability to draw overall conclusions and make reliable predictions. In this study, we reviewed 1473 effect sizes from 38 publications, and classified all responses into seven main categories (from molecular to individual levels) according to their toxicological significance. Our meta-analysis revealed that metal(loid) mixtures had significant effects on aquatic organisms (33 %, 95 % CI 28 %-39 %, P < 0.05), along with significant response heterogeneity (Qt = 690,319.62, P < 0.0001; I = 99.95 %). Concurrently, we developed a Random Forest machine learning model to predict adverse effects and identify key variables. These two methods demonstrated that the toxicity of metal(loid) mixtures is primarily linked to the choice of toxicity endpoints, and the characteristics of metal(loid) mixtures. Our findings underscore the potential of combining meta-analysis with machine learning, a more systematic approach, to enhance the understanding and prediction of the adverse effects of metal(loid) mixtures, and they offer guidance for risk assessment and policy-making in complex environmental scenarios.

摘要

在现实的水生环境中,金属(类)的共存需要评估它们的联合效应。然而,由于金属(类)-金属(类)相互作用,加和效应假说的普遍性存在争议。缺乏系统的评估方法限制了我们得出总体结论和进行可靠预测的能力。在这项研究中,我们回顾了 38 篇出版物中的 1473 个效应大小,并根据其毒理学意义将所有反应分为七个主要类别(从分子到个体水平)。我们的荟萃分析表明,金属(类)混合物对水生生物具有显著影响(33%,95%置信区间 28%-39%,P<0.05),同时存在显著的反应异质性(Qt=690319.62,P<0.0001;I=99.95%)。同时,我们开发了一个随机森林机器学习模型来预测不良反应和识别关键变量。这两种方法表明,金属(类)混合物的毒性主要与毒性终点的选择以及金属(类)混合物的特征有关。我们的研究结果强调了将荟萃分析与机器学习相结合的潜力,这是一种更系统的方法,可以增强对金属(类)混合物不良反应的理解和预测,并为复杂环境情景下的风险评估和决策提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验