Suppr超能文献

水生生态系统中金属混合物的生态风险评估框架。

A framework for ecological risk assessment of metal mixtures in aquatic systems.

机构信息

GhenToxLab, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium.

Arche, Ghent, Belgium.

出版信息

Environ Toxicol Chem. 2018 Mar;37(3):623-642. doi: 10.1002/etc.4039. Epub 2018 Feb 15.

Abstract

Although metal mixture toxicity has been studied relatively intensely, there is no general consensus yet on how to incorporate metal mixture toxicity into aquatic risk assessment. We combined existing data on chronic metal mixture toxicity at the species level with species sensitivity distribution (SSD)-based in silico metal mixture risk predictions at the community level for mixtures of Ni, Zn, Cu, Cd, and Pb, to develop a tiered risk assessment scheme for metal mixtures in freshwater. Generally, independent action (IA) predicts chronic metal mixture toxicity at the species level most accurately, whereas concentration addition (CA) is the most conservative model. Mixture effects are noninteractive in 69% (IA) and 44% (CA) and antagonistic in 15% (IA) and 51% (CA) of the experiments, whereas synergisms are only observed in 15% (IA) and 5% (CA) of the experiments. At low effect sizes (∼ 10% mixture effect), CA overestimates metal mixture toxicity at the species level by 1.2-fold (i.e., the mixture interaction factor [MIF]; median). Species, metal presence, or number of metals does not significantly affect the MIF. To predict metal mixture risk at the community level, bioavailability-normalization procedures were combined with CA or IA using SSD techniques in 4 different methods, which were compared using environmental monitoring data of a European river basin (the Dommel, The Netherlands). We found that the simplest method, in which CA is directly applied to the SSD (CA ), is also the most conservative method. The CA has median margins of safety (MoS) of 1.1 and 1.2 respectively for binary mixtures compared with the theoretically more consistent methods of applying CA or IA to the dose-response curve of each species individually prior to estimating the fraction of affected species (CA or IA ). The MoS increases linearly with an increasing number of metals, up to 1.4 and 1.7 for quinary mixtures (median) compared with CA and IA , respectively. When our methods were applied to a geochemical baseline database (Forum of European Geological Surveys [FOREGS]), we found that CA yielded a considerable number of mixture risk predictions, even when metals were at background levels (8% of the water samples). In contrast, metal mixture risks predicted with the theoretically more consistent methods (e.g., IA ) were very limited under natural background metal concentrations (<1% of the water samples). Based on the combined evidence of chronic mixture toxicity predictions at the species level and evidence of in silico risk predictions at the community level, a tiered risk assessment scheme for evaluating metal mixture risks is presented, with CA functioning as a first, simple conservative tier. The more complex, but theoretically more consistent and most accurate method, IA , can be used in higher tier assessments. Alternatively, the conservatism of CA can be accounted for deterministically by incorporating the MoS and MIF in the scheme. Finally, specific guidance is also given related to specific issues, such as how to deal with nondetect data and complex mixtures that include so-called data-poor metals. Environ Toxicol Chem 2018;37:623-642. © 2017 SETAC.

摘要

虽然金属混合物毒性已经得到了相对深入的研究,但如何将金属混合物毒性纳入水生风险评估中,目前尚未达成共识。我们结合了物种水平慢性金属混合物毒性的现有数据和基于物种敏感性分布(SSD)的社区水平金属混合物风险预测的计算数据,开发了一种用于淡水金属混合物的分层风险评估方案。一般来说,独立作用(IA)最准确地预测了物种水平的慢性金属混合物毒性,而浓度加和(CA)是最保守的模型。混合物效应在 69%(IA)和 44%(CA)的实验中是非交互的,在 15%(IA)和 51%(CA)的实验中是拮抗的,而协同作用仅在 15%(IA)和 5%(CA)的实验中观察到。在低效应大小(约 10%混合物效应)下,CA 高估了物种水平的金属混合物毒性,倍数为 1.2(即混合物相互作用因子[MIF];中位数)。物种、金属存在或金属数量对 MIF 没有显著影响。为了预测社区水平的金属混合物风险,我们使用 SSD 技术,将生物可利用性归一化程序与 CA 或 IA 结合在一起,使用 4 种不同的方法进行了比较,并用欧洲河流流域(荷兰的 Dommel)的环境监测数据进行了比较。我们发现,最简单的方法是直接将 CA 应用于 SSD(CA),也是最保守的方法。与将 CA 或 IA 分别应用于每个物种的剂量-反应曲线,然后估计受影响物种的比例(CA 或 IA)的理论上更一致的方法相比,CA 对二元混合物的中位安全边际(MoS)分别为 1.1 和 1.2。MoS 随金属数量的增加呈线性增加,与 CA 相比,五元混合物(中位数)的 MoS 分别增加到 1.4 和 1.7。当我们将这些方法应用于地球化学基线数据库(欧洲地质调查论坛[FOREGS])时,我们发现 CA 产生了相当数量的混合物风险预测,即使在金属处于背景水平(8%的水样)的情况下也是如此。相比之下,在自然背景金属浓度下(<1%的水样),使用理论上更一致的方法(如 IA)预测金属混合物风险非常有限。基于物种水平慢性混合物毒性预测的综合证据和社区水平计算风险预测的证据,提出了一种用于评估金属混合物风险的分层风险评估方案,CA 作为第一个简单的保守层。更复杂但在理论上更一致和更准确的方法 IA 可用于更高层次的评估。或者,可以通过在方案中纳入 MoS 和 MIF,来确定 CA 的保守程度。最后,还提供了与特定问题相关的具体指导,例如如何处理无检测数据和包括所谓数据匮乏金属的复杂混合物。Environ Toxicol Chem 2018;37:623-642. © 2017 SETAC.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验