Suppr超能文献

评估基于机器学习的临床风险预测模型中的性别偏见:在不同医院的多个用例上的研究。

Evaluating gender bias in ML-based clinical risk prediction models: A study on multiple use cases at different hospitals.

机构信息

Dedalus Healthcare, Antwerp, Belgium.

Provincial Key Laboratory of Multimodal Perceiving and Intelligent Systems, Jiaxing University, Jiaxing 314001, China; Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, 314001, China.

出版信息

J Biomed Inform. 2024 Sep;157:104692. doi: 10.1016/j.jbi.2024.104692. Epub 2024 Jul 14.

Abstract

BACKGROUND

An inherent difference exists between male and female bodies, the historical under-representation of females in clinical trials widened this gap in existing healthcare data. The fairness of clinical decision-support tools is at risk when developed based on biased data. This paper aims to quantitatively assess the gender bias in risk prediction models. We aim to generalize our findings by performing this investigation on multiple use cases at different hospitals.

METHODS

First, we conduct a thorough analysis of the source data to find gender-based disparities. Secondly, we assess the model performance on different gender groups at different hospitals and on different use cases. Performance evaluation is quantified using the area under the receiver-operating characteristic curve (AUROC). Lastly, we investigate the clinical implications of these biases by analyzing the underdiagnosis and overdiagnosis rate, and the decision curve analysis (DCA). We also investigate the influence of model calibration on mitigating gender-related disparities in decision-making processes.

RESULTS

Our data analysis reveals notable variations in incidence rates, AUROC, and over-diagnosis rates across different genders, hospitals and clinical use cases. However, it is also observed the underdiagnosis rate is consistently higher in the female population. In general, the female population exhibits lower incidence rates and the models perform worse when applied to this group. Furthermore, the decision curve analysis demonstrates there is no statistically significant difference between the model's clinical utility across gender groups within the interested range of thresholds.

CONCLUSION

The presence of gender bias within risk prediction models varies across different clinical use cases and healthcare institutions. Although inherent difference is observed between male and female populations at the data source level, this variance does not affect the parity of clinical utility. In conclusion, the evaluations conducted in this study highlight the significance of continuous monitoring of gender-based disparities in various perspectives for clinical risk prediction models.

摘要

背景

男性和女性的身体存在内在差异,临床试验中女性代表性不足,这使得现有医疗保健数据中的差距进一步扩大。基于有偏差的数据开发的临床决策支持工具的公正性存在风险。本文旨在定量评估风险预测模型中的性别偏见。我们旨在通过在不同医院的多个用例上进行此调查来推广我们的发现。

方法

首先,我们对源数据进行彻底分析,以发现基于性别的差异。其次,我们评估不同医院和不同用例中不同性别组的模型性能。使用接收器操作特征曲线下的面积(AUROC)来量化性能评估。最后,我们通过分析漏诊率和过度诊断率以及决策曲线分析(DCA)来研究这些偏差的临床意义。我们还研究了模型校准对减轻决策过程中与性别相关的差异的影响。

结果

我们的数据分析揭示了不同性别、医院和临床用例之间发病率、AUROC 和过度诊断率的显著差异。然而,也观察到女性人群中的漏诊率始终较高。一般来说,女性人群的发病率较低,当应用于该组时,模型的性能更差。此外,决策曲线分析表明,在感兴趣的阈值范围内,模型在不同性别组中的临床实用性没有统计学上的显著差异。

结论

风险预测模型中的性别偏见在不同的临床用例和医疗机构中存在差异。尽管在数据源层面观察到男性和女性人群之间存在内在差异,但这种差异并不影响临床实用性的均等性。总之,本研究中的评估强调了在各种角度持续监测临床风险预测模型中性别差异的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验