Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
Biochim Biophys Acta Bioenerg. 2024 Nov 1;1865(4):149489. doi: 10.1016/j.bbabio.2024.149489. Epub 2024 Jul 14.
Cytochrome bds are bacterial terminal oxidases expressed under low oxygen conditions, and they are important for the survival of many pathogens and hence potential drug targets. The largest subunit CydA contains the three redox-active cofactors heme b, heme b and the active site heme d. One suggested proton transfer pathway is found at the interface between the CydA and the other major subunit CydB. Here we have studied the O reduction mechanism in E. coli cyt. bd-I using the flow-flash technique and focused on the mechanism, kinetics and pathway for proton transfer. Our results show that the peroxy (P) to ferryl (F) transition, coupled to the oxidation of the low-spin heme b is pH dependent, with a maximum rate constant (~10 s) that is slowed down at higher pH. We assign this behavior to rate-limitation by internal proton transfer from a titratable residue with pK ~ 9.7. Proton uptake from solution occurs with the same P➔F rate constant. Site-directed mutagenesis shows significant effects on catalytic turnover in the CydB variants Asp58➔Asn and Asp105➔Asn variants consistent with them playing a role in proton transfer. Furthermore, in the Asp105➔Asn variant, the reactions up to P formation occur essentially as in the wildtype bd-I, but the P➔F transition is specifically inhibited, supporting a direct and specific role for Asp105 in the functional proton transfer pathway in bd-I. We further discuss the possible identity of the high pK proton donor, and the conservation pattern of the Asp-105 in the cyt. bd superfamily.
细胞色素 bds 是在低氧条件下表达的细菌末端氧化酶,它们对许多病原体的生存至关重要,因此也是潜在的药物靶点。大亚基 CydA 包含三个氧化还原活性辅因子血红素 b、血红素 b 和活性位点血红素 d。在 CydA 和另一个主要亚基 CydB 之间的界面上发现了一条建议的质子转移途径。在这里,我们使用流动闪光技术研究了大肠杆菌 cyt. bd-I 中的 O 还原机制,重点研究了质子转移的机制、动力学和途径。我们的结果表明,过氧(P)到铁氧(F)的转变与低自旋血红素 b 的氧化偶联是 pH 依赖性的,最大速率常数(~10 s)在较高 pH 值下减慢。我们将这种行为归因于内部质子从 pK ~ 9.7 的可滴定残基向质子转移的速率限制。从溶液中摄取质子与相同的 P➔F 速率常数发生。定点突变显示 CydB 变体 Asp58➔Asn 和 Asp105➔Asn 变体中的催化周转率有显著影响,这与它们在质子转移中发挥作用一致。此外,在 Asp105➔Asn 变体中,直到 P 形成的反应基本上与野生型 bd-I 相同,但 P➔F 转变被特异性抑制,这支持了 Asp105 在 bd-I 中功能质子转移途径中的直接和特定作用。我们进一步讨论了高 pK 质子供体的可能身份,以及 cyt. bd 超家族中 Asp105 的保守模式。