Suppr超能文献

多重用药评估分数的制定与验证方案。

Protocol for the development and validation of a Polypharmacy Assessment Score.

作者信息

Tsang Jung Yin, Sperrin Matthew, Blakeman Thomas, Payne Rupert A, Ashcroft Darren M

机构信息

Centre for Primary Care and Health Services Research, School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK.

NIHR Greater Manchester Patient Safety Research Collaboration (GMPSRC), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK.

出版信息

Diagn Progn Res. 2024 Jul 16;8(1):10. doi: 10.1186/s41512-024-00171-7.

Abstract

BACKGROUND

An increasing number of people are using multiple medications each day, named polypharmacy. This is driven by an ageing population, increasing multimorbidity, and single disease-focussed guidelines. Medications carry obvious benefits, yet polypharmacy is also linked to adverse consequences including adverse drug events, drug-drug and drug-disease interactions, poor patient experience and wasted resources. Problematic polypharmacy is 'the prescribing of multiple medicines inappropriately, or where the intended benefits are not realised'. Identifying people with problematic polypharmacy is complex, as multiple medicines can be suitable for people with several chronic conditions requiring more treatment. Hence, polypharmacy is often potentially problematic, rather than always inappropriate, dependent on clinical context and individual benefit vs risk. There is a need to improve how we identify and evaluate these patients by extending beyond simple counts of medicines to include individual factors and long-term conditions.

AIM

To produce a Polypharmacy Assessment Score to identify a population with unusual levels of prescribing who may be at risk of potentially problematic polypharmacy.

METHODS

Analyses will be performed in three parts: 1. A prediction model will be constructed using observed medications count as the dependent variable, with age, gender and long-term conditions as independent variables. A 'Polypharmacy Assessment Score' will then be constructed through calculating the differences between the observed and expected count of prescribed medications, thereby highlighting people that have unexpected levels of prescribing. Parts 2 and 3 will examine different aspects of validity of the Polypharmacy Assessment Score: 2. To assess 'construct validity', cross-sectional analyses will evaluate high-risk prescribing within populations defined by a range of Polypharmacy Assessment Scores, using both explicit (STOPP/START criteria) and implicit (Medication Appropriateness Index) measures of inappropriate prescribing. 3. To assess 'predictive validity', a retrospective cohort study will explore differences in clinical outcomes (adverse drug reactions, unplanned hospitalisation and all-cause mortality) between differing scores.

DISCUSSION

Developing a cross-cutting measure of polypharmacy may allow healthcare professionals to prioritise and risk stratify patients with polypharmacy using unusual levels of prescribing. This would be an improvement from current approaches of either using simple cutoffs or narrow prescribing criteria.

摘要

背景

每天使用多种药物的人数日益增加,即所谓的多重用药。这是由人口老龄化、多种疾病并存情况增多以及以单一疾病为重点的指南所推动的。药物具有明显的益处,但多重用药也与不良后果相关,包括药物不良事件、药物相互作用和药物与疾病相互作用、患者体验不佳以及资源浪费。有问题的多重用药是指“不恰当地开具多种药物处方,或者未实现预期益处”。识别有问题的多重用药患者很复杂,因为多种药物可能适用于患有多种慢性病需要更多治疗的患者。因此,多重用药往往具有潜在问题,而非总是不恰当,这取决于临床背景以及个体的获益与风险。有必要改进我们识别和评估这些患者的方式,从单纯计算药物数量扩展到纳入个体因素和长期疾病。

目的

制定一个多重用药评估分数,以识别处方量异常且可能存在有问题的多重用药风险的人群。

方法

分析将分三个部分进行:1. 将构建一个预测模型,以观察到的药物数量作为因变量,年龄、性别和长期疾病作为自变量。然后通过计算观察到的和预期的处方药物数量之间的差异来构建“多重用药评估分数”,从而突出显示处方量异常的人群。第2部分和第3部分将检查多重用药评估分数有效性的不同方面:2. 为评估“结构效度”,横断面分析将使用明确的(STOPP/START标准)和隐含的(用药适宜性指数)不恰当处方衡量方法,评估由一系列多重用药评估分数定义的人群中的高风险处方。3. 为评估“预测效度”,一项回顾性队列研究将探讨不同分数之间临床结局(药物不良反应、非计划住院和全因死亡率)的差异。

讨论

制定一个跨领域的多重用药衡量标准可能使医疗保健专业人员能够利用异常的处方量对多重用药患者进行优先排序和风险分层。这将比目前使用简单临界值或狭窄处方标准的方法有所改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e445/11251249/048cf74762a3/41512_2024_171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验