Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Thailand.
Plant J. 2024 Sep;119(5):2464-2483. doi: 10.1111/tpj.16933. Epub 2024 Jul 16.
The metabolism of tetrahydrofolate (HPteGlu)-bound one-carbon (C) units (C metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C units in specific organelles and tissues. One possible source of C units is via formate-tetrahydrofolate ligase, which catalyzes the reversible ATP-driven production of 10-formyltetrahydrofolate (10-formyl-HPteGlu) from formate and tetrahydrofolate (HPteGlu). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower K and k values with pentaglutamyl tetrahydrofolate (HPteGlu) as compared to monoglutamyl tetrahydrofolate (HPteGlu), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP-tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T-DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of HPteGlu + 5,10-methylene-HPteGlu and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C network in roots with C units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5-methyl-HPteGlu, methionine, and S-adenosylmethionine. This finding has implications for any future attempts to engineer one-carbon unit-requiring products through manipulation of the one-carbon metabolic network in non-photosynthetic organs.
四氢叶酸(HPteGlu)结合的一碳(C)单位的代谢(C 代谢)是多方面的,是植物生长所必需的,但目前尚不清楚许多可能的合成途径中的哪些途径能够为特定细胞器和组织提供 C 单位。C 单位的一个可能来源是通过甲酸盐-四氢叶酸连接酶,该酶催化甲酸盐和四氢叶酸(HPteGlu)之间可逆的 ATP 驱动反应,生成 10-甲酰基四氢叶酸(10-formyl-HPteGlu)。在这里,我们报告了来自拟南芥(Arabidopsis thaliana)的酶的生化和功能特征(AtFTHFL)。我们发现,与单谷氨酸四氢叶酸(HPteGlu)相比,重组 AtFTHFL 对五谷氨酸四氢叶酸(HPteGlu)的 K 和 k 值较低,导致两种底物的催化效率几乎相同。用 EGFP 标记的 AtFTHFL 稳定转化拟南芥植物,然后用荧光显微镜观察,显示出细胞质信号。与野生型植物相比,具有 AtFTHFL 功能受损的两个独立的 T-DNA 插入系的根更短,这表明该酶对根生长很重要。过表达 AtFTHFL 导致 HPteGlu+5,10-亚甲基-HPteGlu 和丝氨酸在转基因拟南芥植物的根中积累,同时消耗甲酸盐和乙醛酸。这种代谢调整支持这样一种假设,即 AtFTHFL 通过从乙醛酸中为根中的细胞质 C 网络提供 C 单位,并且这些单位主要用于丝氨酸的生物合成,而不是用于 5-甲基-HPteGlu、蛋氨酸和 S-腺苷甲硫氨酸的生物合成。这一发现对任何未来通过操纵非光合器官中的一碳代谢网络来设计需要一碳单位的产品的尝试都具有重要意义。