Suppr超能文献

通过脉冲细丝法提高气相聚合反应动力学

Enhancing the Kinetics of Vapor-based Polymerization by Pulsed Filament Approach.

作者信息

Guo Jie, Bose Ranjita K

机构信息

Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4 Groningen AG 9747, the Netherlands.

出版信息

Langmuir. 2024 Jul 16;40(30):15550-7. doi: 10.1021/acs.langmuir.4c01172.

Abstract

Initiated chemical vapor deposition is a versatile technique for synthesizing conformal polymer films on both planar and porous surfaces. It can retain functional groups and avoid undesired cross-linking. However, there is still room for enhancing its performance without altering the feed parameters. Here, we investigate a pulsed iCVD approach to improve the deposition process, achieved by switching on and off the resistively heated filament periodically. By strategically switching off the filament, a shortage of thermally activated primary radicals was created, which allowed uninterrupted chain propagation with fewer termination reactions and potentially increased monomer conversion rates. This has caused significantly faster deposition kinetics with a higher molecular weight and longer chain length for poly(glycidyl methacrylate) compared to continuous deposition. Spectra analyses confirmed that the functionality and stoichiometry ratios remained intact throughout the pulsed deposition process. The pulsed iCVD method is therefore a competitive and sustainable tool, demonstrating fast deposition kinetics and a well-preserved functionality.

摘要

引发化学气相沉积是一种在平面和多孔表面上合成保形聚合物薄膜的通用技术。它可以保留官能团并避免不希望的交联。然而,在不改变进料参数的情况下,仍有提高其性能的空间。在此,我们研究了一种脉冲式引发化学气相沉积方法来改进沉积过程,该方法通过周期性地打开和关闭电阻加热丝来实现。通过策略性地关闭加热丝,造成了热活化初级自由基的短缺,这使得链增长不受干扰,终止反应减少,并可能提高单体转化率。与连续沉积相比,这导致聚甲基丙烯酸缩水甘油酯的沉积动力学显著加快,分子量更高,链长更长。光谱分析证实,在脉冲沉积过程中,官能度和化学计量比保持不变。因此,脉冲式引发化学气相沉积方法是一种具有竞争力的可持续工具,展示出快速的沉积动力学和良好保留的官能度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11295193/ed8c2308fbe2/la4c01172_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验