Suppr超能文献

聚(4-氨基苯乙烯)的引发化学气相沉积动力学

Initiated Chemical Vapor Deposition Kinetics of Poly(4-aminostyrene).

作者信息

Khlyustova Alexandra, Yang Rong

机构信息

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States.

出版信息

Front Bioeng Biotechnol. 2021 Apr 16;9:670541. doi: 10.3389/fbioe.2021.670541. eCollection 2021.

Abstract

Chemical Vapor Deposition (iCVD) is a free-radical polymerization technique used to synthesize functional polymer thin films. In the context of drug delivery, the conformality of iCVD coatings and the variety of functional chemical moieties make them excellent materials for encapsulating pharmaceutics. Poly(4-aminostyrene) (PAS) belongs to a class of functionalizable materials, whose primary amine allows decoration of the delivery vehicles with biomolecules that enable targeted delivery or biocompatibility. Understanding kinetics of PAS polymerization in iCVD is crucial for such deployments because drug release kinetics in thin-film encapsulation have been shown to be determined by the film thickness. Nevertheless, the effects of deposition conditions on PAS growth kinetics have not been studied systematically. To bridge that knowledge gap, we report the kinetics of iCVD polymerization as a function of fractional saturation pressure of the monomer (i.e., P/P) in a dual-regime fashion, with quadratic dependence under low P/P and linear dependence under high P/P. We uncovered the critical P/P value of 0.2, around which the transition also occurs for many other iCVD monomers. Because existing theoretical models for the iCVD process cannot fully explain the dual-regime polymerization kinetics, we drew inspiration from solution-phase polymerization and proposed updated termination mechanisms that account for the transition between two regimes. The reported model builds upon existing iCVD theories and allows the synthesis of PAS thin films with precisely controlled growth rates, which has the potential to accelerate the deployment of iCVD PAS as a novel biomaterial in controlled and targeted drug delivery with designed pharmacokinetics.

摘要

化学气相沉积(iCVD)是一种用于合成功能性聚合物薄膜的自由基聚合技术。在药物递送领域,iCVD涂层的保形性和多种功能性化学基团使其成为包封药物的理想材料。聚(4-氨基苯乙烯)(PAS)属于一类可功能化的材料,其伯胺可用于用能够实现靶向递送或生物相容性的生物分子修饰递送载体。了解iCVD中PAS聚合的动力学对于此类应用至关重要,因为薄膜包封中的药物释放动力学已被证明取决于膜厚度。然而,沉积条件对PAS生长动力学的影响尚未得到系统研究。为了填补这一知识空白,我们以双区域方式报告了iCVD聚合动力学与单体的分数饱和压力(即P/P)的函数关系,在低P/P下呈二次依赖关系,在高P/P下呈线性依赖关系。我们发现临界P/P值为0.2,许多其他iCVD单体的转变也发生在该值附近。由于现有的iCVD过程理论模型无法完全解释双区域聚合动力学,我们从溶液相聚合中获得灵感,提出了更新的终止机制来解释两种区域之间的转变。所报道的模型基于现有的iCVD理论构建,能够合成具有精确控制生长速率的PAS薄膜,这有可能加速iCVD PAS作为一种新型生物材料在具有设计药代动力学的可控和靶向药物递送中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a55/8085358/a72f1824ddab/fbioe-09-670541-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验