Wang Xunhua, Gao Rongkai, Li Xiaoxun
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
Suzhou Institute of Shandong University, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China.
J Am Chem Soc. 2024 Jul 31;146(30):21069-21077. doi: 10.1021/jacs.4c06436. Epub 2024 Jul 16.
The direct construction of bioisosteric compounds enriched in C content represents an attractive and dependable approach to imbuing biologically active molecules with enhanced three-dimensional characteristics, finding wide utility across the synthetic and medicinal chemistry community. Despite recent advancements in the synthesis of (aza)-bicyclo[3.1.1]heptanes (BCHeps and aza-BCHeps), which serve as -substituted (aza)-arene bioisosteres, the enantioselective assembly of chiral 3-aza-BCHeps remains a coveted goal yet to be achieved. Here, we disclose an unprecedented copper-catalyzed asymmetric formal [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes (BCBs) and azomethine ylides, furnishing a diverse array of enantioenriched 3-aza-BCHeps with exceptional levels of diastereo- and enantioselectivites (51 examples, all >20:1 dr, mostly 97-99% ee). Both mono- and disubstituted BCBs are well compatible with this protocol, offering an enticing route for the efficient synthesis of challenging tetrasubstituted bicyclic products bearing two quaternary centers. The synthetic significance of this methodology is further demonstrated by the successful preparation of several piperidine drug analogues.
直接构建富含碳的生物电子等排体化合物是一种引人关注且可靠的方法,可赋予生物活性分子增强的三维特性,在合成化学和药物化学领域具有广泛应用。尽管最近在合成(氮杂)双环[3.1.1]庚烷(BCHeps和氮杂-BCHeps)方面取得了进展,它们作为β-取代的(氮杂)芳烃生物电子等排体,但手性3-氮杂-BCHeps的对映选择性组装仍是一个令人向往但尚未实现的目标。在此,我们报道了一种前所未有的铜催化双环[1.1.0]丁烷(BCBs)与甲亚胺叶立德的不对称形式[4π+2σ]环加成反应,可提供多种对映体富集的3-氮杂-BCHeps,具有出色的非对映和对映选择性(51个例子,所有dr均>20:1,大多数ee为97-99%)。单取代和双取代的BCBs都与该方法良好兼容,为高效合成带有两个季碳中心的具有挑战性的四取代双环产物提供了一条诱人的途径。通过成功制备几种哌啶药物类似物,进一步证明了该方法的合成意义。