Suppr超能文献

物理性细胞间接触会引发酿酒酵母物种中的特定转录组反应。

Physical cell-cell contact elicits specific transcriptomic responses in wine yeast species.

作者信息

Luyt Natasha A, de Witt Riaan N, Divol Benoit, Patterton Hugh G, Setati Mathabatha E, Taillandier Patricia, Bauer Florian F

机构信息

Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, Western Cape, South Africa.

Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, Western Cape, South Africa.

出版信息

Microbiol Spectr. 2024 Aug 6;12(8):e0057223. doi: 10.1128/spectrum.00572-23. Epub 2024 Jul 16.

Abstract

Fermenting grape juice provides a habitat for a well-mapped and evolutionarily relevant microbial ecosystem consisting of many natural or inoculated strains of yeasts and bacteria. The molecular nature of many of the ecological interactions within this ecosystem remains poorly understood, with the partial exception of interactions of a metabolic nature such as competition for nutrients and production of toxic metabolites/peptides. Data suggest that physical contact between species plays a significant role in the phenotypic outcome of interspecies interactions. However, the molecular nature of the mechanisms regulating these phenotypes remains unknown. Here, we present a transcriptomic analysis of physical versus metabolic contact between two wine relevant yeast species, and . The data show that these species respond to the physical presence of the other species. In , physical contact results in the upregulation of genes involved in maintaining cell wall integrity, cell wall structural components, and genes involved in the production of HS. In , stress response genes were the most significantly upregulated gene family. Both yeasts downregulated genes belonging to the family, some of which play prominent roles in cellular adhesion. qPCR analysis indicates that the expression of some of these genes is regulated in a species-specific manner, suggesting that yeasts adjust gene expression to specific biotic challenges or interspecies interactions. These findings provide fundamental insights into yeast interactions and evolutionary adaptations of these species to the wine ecosystem.IMPORTANCEWithin the wine ecosystem, yeasts are the most relevant contributors to alcoholic fermentation and wine organoleptic characteristics. While some studies have described yeast-yeast interactions during alcoholic fermentation, such interactions remain ill-defined, and little is understood regarding the molecular mechanisms behind many of the phenotypes observed when two or more species are co-cultured. In particular, no study has investigated transcriptional regulation in response to physical interspecies cell-cell contact, as opposed to the generally better understood/characterized metabolic interactions. These data are of direct relevance to our understanding of microbial ecological interactions in general while also creating opportunities to improve ecosystem-based biotechnological applications such as wine fermentation. Furthermore, the presence of competitor species has rarely been considered an evolutionary biotic selection pressure. In this context, the data reveal novel gene functions. This, and further such analysis, is likely to significantly enlarge the genome annotation space.

摘要

发酵葡萄汁为一个有详尽记录且与进化相关的微生物生态系统提供了栖息环境,该生态系统由许多天然或接种的酵母和细菌菌株组成。这个生态系统中许多生态相互作用的分子本质仍知之甚少,部分代谢性质的相互作用除外,比如对营养物质的竞争以及有毒代谢物/肽的产生。数据表明物种间的物理接触在种间相互作用的表型结果中起重要作用。然而,调节这些表型的机制的分子本质仍然未知。在此,我们展示了对两种与葡萄酒相关的酵母物种 和 之间物理接触与代谢接触的转录组分析。数据显示这些物种会对另一个物种的物理存在做出反应。在 中,物理接触导致参与维持细胞壁完整性、细胞壁结构成分的基因以及参与HS产生的基因上调。在 中,应激反应基因是上调最显著的基因家族。两种酵母都下调了属于 家族的基因,其中一些在细胞黏附中起重要作用。qPCR分析表明其中一些基因的表达以物种特异性方式受到调节,这表明酵母会根据特定的生物挑战或种间相互作用来调整基因表达。这些发现为酵母相互作用以及这些物种对葡萄酒生态系统的进化适应提供了基本见解。重要性在葡萄酒生态系统中,酵母是酒精发酵和葡萄酒感官特性的最主要贡献者。虽然一些研究描述了酒精发酵过程中酵母与酵母之间的相互作用,但这种相互作用仍不明确,对于两种或更多物种共培养时观察到的许多表型背后的分子机制了解甚少。特别是,与通常理解得更好/特征更明确的代谢相互作用不同,没有研究调查过对种间物理细胞 - 细胞接触的转录调控。这些数据与我们对一般微生物生态相互作用的理解直接相关,同时也为改进基于生态系统的生物技术应用(如葡萄酒发酵)创造了机会。此外,竞争物种的存在很少被视为一种进化生物选择压力。在这种背景下,这些数据揭示了新的基因功能。这以及进一步的此类分析可能会显著扩大基因组注释空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce63/11302351/ca11d406abb0/spectrum.00572-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验