Suppr超能文献

通过与……的互利共生相互作用提高热耐受性的定量蛋白质组学见解

Quantitative proteomics insights into thermal tolerance enhancement by a mutualistic interaction with .

作者信息

Zhao Na, Liu Fei, Dong Wenxiu, Yu Jie, Halverson Larry J, Xie Bo

机构信息

School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China.

Translational Medicine Research Center, Guizhou Medical University, Guiyang, China.

出版信息

Microbiol Spectr. 2024 Aug 6;12(8):e0021924. doi: 10.1128/spectrum.00219-24. Epub 2024 Jul 16.

Abstract

UNLABELLED

Interactions between photosynthetic microalgae and bacteria impact the physiology of both partners, which influence the fitness and ecological trajectories of each partner in an environmental context-dependent manner. Thermal tolerance of can be enhanced through a mutualistic interaction with vitamin B (cobalamin)-producing . Here, we used label-free quantitative proteomics to reveal the metabolic networks altered by the interaction under normal and high temperatures. We created a scenario where the growth of requires carbon provided by for growth in co-cultures, and survival of under high temperatures relies on cobalamin and possibly other metabolites produced by . Differential abundance analysis identified proteins produced by each partner in co-cultures compared to mono-cultures at each temperature. Proteins involved in cobalamin production by increased in the presence of under elevated temperatures, whereas in , there was an increase in cobalamin-dependent methionine synthase and certain proteins associated with methylation reactions. Co-cultivation and heat stress strongly modulated the central metabolism of both partners as well as various transporters that could facilitate nutrient cross-utilization. Co-cultivation modulated expression of various components of two- or one-component signal transduction systems, transcriptional activators/regulators, or sigma factors, suggesting complex regulatory networks modulate the interaction in a temperature-dependent manner. Notably, heat and general stress-response and antioxidant proteins were upregulated in co-cultures, suggesting that the interaction is inherently stressful to each partner despite the benefits of mutualism. Our results shed insight into the metabolic tradeoffs required for mutualism and how metabolic networks are modulated by elevated temperature.

IMPORTANCE

Photosynthetic microalgae are key primary producers in aquatic ecosystems, playing an important role in the global carbon cycle. Nearly every alga lives in association with a diverse community of microorganisms that influence each other and their metabolic activities or survival. One chemical produced by bacteria that influence algae is vitamin B, an enzyme cofactor used for a variety of metabolic functions. The alga benefits from vitamin B produced by by producing the amino acid methionine under high temperatures which are required for thermotolerance. Yet, our understanding of this interaction under normal and stressful temperatures is poor. Here, we used quantitative proteomics to identify differentially expressed proteins to reveal metabolic adjustments made by and that could facilitate this mutualism. These findings will enhance our understanding of how photosynthetic algae and their associated microbiomes will respond as global temperatures increase.

摘要

未标记

光合微藻与细菌之间的相互作用会影响双方的生理机能,进而以环境背景依赖的方式影响每个伙伴的适应性和生态轨迹。通过与产生维生素B(钴胺素)的细菌进行互利共生相互作用,可以提高莱茵衣藻的耐热性。在此,我们使用无标记定量蛋白质组学来揭示在正常温度和高温下相互作用所改变的代谢网络。我们构建了一种情形,即在共培养中莱茵衣藻的生长需要细菌提供的碳源,而细菌在高温下的存活依赖于莱茵衣藻产生的钴胺素以及可能的其他代谢产物。差异丰度分析确定了在每个温度下共培养与单培养相比每个伙伴产生的蛋白质。在高温下,细菌中参与钴胺素产生的蛋白质在莱茵衣藻存在时增加,而在莱茵衣藻中,钴胺素依赖性甲硫氨酸合酶以及与甲基化反应相关的某些蛋白质增加。共培养和热应激强烈调节了双方的中心代谢以及各种有助于营养物质交叉利用的转运蛋白。共培养调节了双组分或单组分信号转导系统、转录激活因子/调节因子或西格玛因子的各种组分的表达,表明复杂的调控网络以温度依赖的方式调节这种相互作用。值得注意的是,共培养中热应激和一般应激反应及抗氧化蛋白上调,这表明尽管存在互利共生的益处,但这种相互作用对每个伙伴来说本质上都是有压力的。我们的结果深入了解了互利共生所需的代谢权衡以及代谢网络如何受到高温的调节。

重要性

光合微藻是水生生态系统中的关键初级生产者,在全球碳循环中发挥着重要作用。几乎每种藻类都与一个多样化的微生物群落共生,这些微生物相互影响及其代谢活动或生存。细菌产生的一种影响藻类的化学物质是维生素B,它是一种用于多种代谢功能的酶辅因子。莱茵衣藻通过在高温下产生甲硫氨酸而受益于细菌产生的维生素B,而甲硫氨酸是细菌耐热性所必需的。然而,我们对正常温度和应激温度下这种相互作用的了解甚少。在此,我们使用定量蛋白质组学来鉴定差异表达的蛋白质,以揭示莱茵衣藻和细菌为促进这种互利共生所做的代谢调整。这些发现将增进我们对光合藻类及其相关微生物群落如何应对全球气温升高的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f67/11302038/45dfda7d3da3/spectrum.00219-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验