Suppr超能文献

基于跨模态数据增强的功能性近红外光谱驱动的抑郁识别。

fNIRS-Driven Depression Recognition Based on Cross-Modal Data Augmentation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2688-2698. doi: 10.1109/TNSRE.2024.3429337. Epub 2024 Jul 30.

Abstract

Early diagnosis and intervention of depression promote complete recovery, with its traditional clinical assessments depending on the diagnostic scales, clinical experience of doctors and patient cooperation. Recent researches indicate that functional near-infrared spectroscopy (fNIRS) based on deep learning provides a promising approach to depression diagnosis. However, collecting large fNIRS datasets within a standard experimental paradigm remains challenging, limiting the applications of deep networks that require more data. To address these challenges, in this paper, we propose an fNIRS-driven depression recognition architecture based on cross-modal data augmentation (fCMDA), which converts fNIRS data into pseudo-sequence activation images. The approach incorporates a time-domain augmentation mechanism, including time warping and time masking, to generate diverse data. Additionally, we design a stimulation task-driven data pseudo-sequence method to map fNIRS data into pseudo-sequence activation images, facilitating the extraction of spatial-temporal, contextual and dynamic characteristics. Ultimately, we construct a depression recognition model based on deep classification networks using the imbalance loss function. Extensive experiments are performed on the two-class depression diagnosis and five-class depression severity recognition, which reveal impressive results with accuracy of 0.905 and 0.889, respectively. The fCMDA architecture provides a novel solution for effective depression recognition with limited data.

摘要

早期诊断和干预抑郁症可以促进完全康复,其传统的临床评估依赖于诊断量表、医生的临床经验和患者的配合。最近的研究表明,基于深度学习的功能近红外光谱 (fNIRS) 为抑郁症诊断提供了一种很有前途的方法。然而,在标准实验范式内收集大型 fNIRS 数据集仍然具有挑战性,限制了需要更多数据的深度网络的应用。针对这些挑战,在本文中,我们提出了一种基于跨模态数据增强 (fCMDA) 的 fNIRS 驱动的抑郁识别架构,该架构将 fNIRS 数据转换为伪序列激活图像。该方法包含一个时域增强机制,包括时间扭曲和时间掩蔽,以生成多样化的数据。此外,我们设计了一种刺激任务驱动的数据伪序列方法,将 fNIRS 数据映射到伪序列激活图像中,从而提取空间-时间、上下文和动态特征。最终,我们使用不平衡损失函数构建了一个基于深度分类网络的抑郁识别模型。在两个类别的抑郁症诊断和五个级别的抑郁症严重程度识别的广泛实验中,分别达到了 0.905 和 0.889 的准确率,结果令人印象深刻。fCMDA 架构为有效识别抑郁症提供了一种新颖的解决方案,特别是在数据有限的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验