Suppr超能文献

通过堆叠深度学习衍生的频域特征提高功能近红外光谱脑机接口的性能。

Improved performance of fNIRS-BCI by stacking of deep learning-derived frequency domain features.

作者信息

Akhter Jamila, Nazeer Hammad, Naseer Noman, Naeem Rehan, Kallu Karam Dad, Lee Jiye, Ko Seong Young

机构信息

Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan.

MeRIC-Lab (Medical Robotics & Intelligent Control Laboratory), School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea.

出版信息

PLoS One. 2025 Apr 17;20(4):e0314447. doi: 10.1371/journal.pone.0314447. eCollection 2025.

Abstract

The functional near-infrared spectroscopy-based brain-computer interface (fNIRS-BCI) systems recognize patterns in brain signals and generate control commands, thereby enabling individuals with motor disabilities to regain autonomy. In this study hand gripping data is acquired using fNIRS neuroimaging system, preprocessing is performed using nirsLAB and features extraction is performed using deep learning (DL) Algorithms. For feature extraction and classification stack and fft methods are proposed. Convolutional neural networks (CNN), long short-term memory (LSTM), and bidirectional long-short-term memory (Bi-LSTM) are employed to extract features. The stack method classifies these features using a stack model and the fft method enhances features by applying fast Fourier transformation which is followed by classification using a stack model. The proposed methods are applied to fNIRS signals from twenty participants engaged in a two-class hand-gripping motor activity. The classification performance of the proposed methods is compared with conventional CNN, LSTM, and Bi-LSTM algorithms and one another. The proposed fft and stack methods yield 90.11% and 87.00% classification accuracies respectively, which are significantly higher than those achieved by CNN (85.16%), LSTM (79.46%), and Bi-LSTM (81.88%) conventional algorithms. The results show that the proposed stack and fft methods can be effectively used for the classification of the two and three-class problems in fNIRS-BCI applications.

摘要

基于功能近红外光谱的脑机接口(fNIRS-BCI)系统能够识别脑信号中的模式并生成控制命令,从而使运动功能障碍者重新获得自主能力。在本研究中,使用fNIRS神经成像系统采集手部抓握数据,使用nirsLAB进行预处理,并使用深度学习(DL)算法进行特征提取。针对特征提取和分类,提出了堆叠和快速傅里叶变换(fft)方法。采用卷积神经网络(CNN)、长短期记忆网络(LSTM)和双向长短期记忆网络(Bi-LSTM)来提取特征。堆叠方法使用堆叠模型对这些特征进行分类,fft方法通过应用快速傅里叶变换来增强特征,随后使用堆叠模型进行分类。所提出的方法应用于20名参与两类手部抓握运动活动的受试者的fNIRS信号。将所提出方法的分类性能与传统的CNN、LSTM和Bi-LSTM算法以及它们彼此之间进行比较。所提出的fft和堆叠方法的分类准确率分别为90.11%和87.00%,显著高于CNN(85.16%)、LSTM(79.46%)和Bi-LSTM(81.88%)等传统算法。结果表明,所提出的堆叠和fft方法可有效用于fNIRS-BCI应用中的两类和三类问题的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f710/12005509/9ad711e077aa/pone.0314447.g001.jpg

相似文献

1
Improved performance of fNIRS-BCI by stacking of deep learning-derived frequency domain features.
PLoS One. 2025 Apr 17;20(4):e0314447. doi: 10.1371/journal.pone.0314447. eCollection 2025.
4
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM.
Front Neurorobot. 2022 Aug 31;16:873239. doi: 10.3389/fnbot.2022.873239. eCollection 2022.
5
Transformer Model for Functional Near-Infrared Spectroscopy Classification.
IEEE J Biomed Health Inform. 2022 Jun;26(6):2559-2569. doi: 10.1109/JBHI.2022.3140531. Epub 2022 Jun 3.
7
Deep learning networks based decision fusion model of EEG and fNIRS for classification of cognitive tasks.
Cogn Neurodyn. 2024 Aug;18(4):1489-1506. doi: 10.1007/s11571-023-09986-4. Epub 2023 Jun 30.
8
CNN-based classification of fNIRS signals in motor imagery BCI system.
J Neural Eng. 2021 Apr 9;18(5). doi: 10.1088/1741-2552/abf187.
9
Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism.
Neuroscience. 2024 Mar 26;542:59-68. doi: 10.1016/j.neuroscience.2024.02.011. Epub 2024 Feb 17.
10
A hybrid CNN model for classification of motor tasks obtained from hybrid BCI system.
Sci Rep. 2025 Jan 8;15(1):1360. doi: 10.1038/s41598-024-84883-2.

本文引用的文献

2
Task-Related Hemodynamic Response Alterations During Slacklining: An fNIRS Study in Advanced Slackliners.
Front Neuroergon. 2021 Mar 3;2:644490. doi: 10.3389/fnrgo.2021.644490. eCollection 2021.
3
Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface.
Comput Methods Programs Biomed. 2024 Feb;244:107944. doi: 10.1016/j.cmpb.2023.107944. Epub 2023 Nov 25.
4
MBGA-Net: A multi-branch graph adaptive network for individualized motor imagery EEG classification.
Comput Methods Programs Biomed. 2023 Oct;240:107641. doi: 10.1016/j.cmpb.2023.107641. Epub 2023 Jun 5.
5
Identifying Thematics in a Brain-Computer Interface Research.
Comput Intell Neurosci. 2023 Jan 4;2023:2793211. doi: 10.1155/2023/2793211. eCollection 2023.
7
Deep learning in fNIRS: a review.
Neurophotonics. 2022 Oct;9(4):041411. doi: 10.1117/1.NPh.9.4.041411. Epub 2022 Jul 20.
8
Minimally Invasive Local-Skull Electrophysiological Modification With Piezoelectric Drill.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2042-2051. doi: 10.1109/TNSRE.2022.3192543. Epub 2022 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验