Zheng Yushan, Wu Kun, Li Jun, Tang Kunming, Shi Jun, Wu Haibo, Jiang Zhiguo, Wang Wei
IEEE J Biomed Health Inform. 2025 Jan;29(1):396-408. doi: 10.1109/JBHI.2024.3429188. Epub 2025 Jan 7.
In the domain of histopathology analysis, existing representation learning methods for biomarkers prediction from whole slide images (WSIs) face challenges due to the complexity of tissue subtypes and label noise problems. This paper proposed a novel partial-label contrastive representation learning approach to enhance the discrimination of histopathology image representations for fine-grained biomarkers prediction. We designed a partial-label contrastive clustering (PLCC) module for partial-label disambiguation and a dynamic clustering algorithm to sample the most representative features of each category to the clustering queue during the contrastive learning process. We conducted comprehensive experiments on three gene mutation prediction datasets, including USTC-EGFR, BRCA-HER2, and TCGA-EGFR. The results show that our method outperforms 9 existing methods in terms of Accuracy, AUC, and F1 Score. Specifically, our method achieved an AUC of 0.950 in EGFR mutation subtyping of TCGA-EGFR and an AUC of 0.853 in HER2 0/1+/2+/3+ grading of BRCA-HER2, which demonstrates its superiority in fine-grained biomarkers prediction from histopathology whole slide images.
在组织病理学分析领域,现有的从全切片图像(WSIs)预测生物标志物的表征学习方法,由于组织亚型的复杂性和标签噪声问题而面临挑战。本文提出了一种新颖的部分标签对比表征学习方法,以增强用于细粒度生物标志物预测的组织病理学图像表征的辨别力。我们设计了一个用于部分标签消歧的部分标签对比聚类(PLCC)模块和一种动态聚类算法,以便在对比学习过程中将每个类别的最具代表性特征采样到聚类队列中。我们在三个基因突变预测数据集上进行了全面实验,包括USTC-EGFR、BRCA-HER2和TCGA-EGFR。结果表明,我们的方法在准确率、AUC和F1分数方面优于9种现有方法。具体而言,我们的方法在TCGA-EGFR的EGFR突变亚型分析中实现了0.950的AUC,在BRCA-HER2的HER2 0/1+/2+/3+分级中实现了0.853的AUC,这证明了其在从组织病理学全切片图像进行细粒度生物标志物预测方面的优越性。