自身免疫性脑炎与耐药性癫痫的血浆代谢组学特征明显不同。
Distinct plasma metabolomic signatures differentiate autoimmune encephalitis from drug-resistant epilepsy.
机构信息
Department of Chemistry, University of Oxford, Oxford, UK.
Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
出版信息
Ann Clin Transl Neurol. 2024 Jul;11(7):1897-1908. doi: 10.1002/acn3.52112. Epub 2024 Jun 21.
OBJECTIVE
Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes.
METHODS
This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA).
RESULTS
The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH)-, -CH), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CHCH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients.
INTERPRETATION
This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.
目的
将自身免疫性脑炎(AE)与其他癫痫发作原因区分开来,有助于加速 AE 患者的免疫治疗,并为研究其不同的病理生理学提供信息。我们旨在研究基于核磁共振(NMR)的代谢组学是否以及如何将 AE 与耐药性癫痫(DRE)区分开来,并对 AE 亚型进行分层。
方法
本研究共招募了 238 名患者:162 名 DRE 患者和 76 名 AE 患者,其中 27 名接触蛋白相关蛋白样 2(CASPR2)抗体阳性,29 名富亮氨酸胶质瘤失活 1 蛋白(LGI1)抗体阳性,20 名 N-甲基-D-天冬氨酸受体(NMDAR)抗体阳性。对各组的血浆样本进行 NMR 光谱分析,并与正交偏最小二乘法判别分析(OPLS-DA)等多变量统计技术进行比较。
结果
OPLS-DA 模型成功地区分了 AE 与 DRE 患者,预测准确率高达 87.0±3.1%(87.9±3.4%的敏感性和 86.3±3.6%的特异性)。此外,两两 OPLS-DA 模型能够对三种 AE 亚型进行分层。AE 的血浆代谢组学特征包括高密度脂蛋白(HDL,-(CH)-,-CH)、磷脂酰胆碱和白蛋白(赖氨酸部分)减少。还观察到 AE 亚型特异性的代谢组学特征,CASPR2 患者中乳酸增加,LGI1 患者中乳酸、葡萄糖增加,不饱和脂肪酸(UFA,-CHCH=)减少,NMDAR 抗体患者中糖蛋白 A(GlycA)增加。
结论
本研究首次提出了一种非抗体生物标志物,用于区分 DRE、AE 和 AE 亚型。这些代谢组学特征强调了脂质代谢和葡萄糖调节在这些神经疾病中的潜在相关性,为促进诊断和治疗提供了一种很有前途的辅助手段。