Suppr超能文献

绘制中国地区的蚊种及其相关病原体的分布图谱。

Mapping the distribution of sandflies and sandfly-associated pathogens in China.

机构信息

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China.

Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, P. R. China.

出版信息

PLoS Negl Trop Dis. 2024 Jul 16;18(7):e0012291. doi: 10.1371/journal.pntd.0012291. eCollection 2024 Jul.

Abstract

BACKGROUND

Understanding and mapping the distribution of sandflies and sandfly-associated pathogens (SAPs) is crucial for guiding the surveillance and control effort. However, their distribution and the related risk burden in China remain poorly understood.

METHODS

We mapped the distribution of sandflies and SAPs using literature data from 1940 to 2022. We also mapped the human visceral leishmaniasis (VL) cases using surveillance data from 2014 to 2018. The ecological drivers of 12 main sandfly species and VL were identified by applying machine learning, and their distribution and risk were predicted in three time periods (2021-2040, 2041-2060, and 2061-2080) under three scenarios of climate and socioeconomic changes.

RESULTS

In the mainland of China, a total of 47 sandfly species have been reported, with the main 12 species classified into three clusters according to their ecological niches. Additionally, 6 SAPs have been identified, which include two protozoa, two bacteria, and two viruses. The incidence risk of different VL subtypes was closely associated with the distribution risk of specific vectors. The model predictions also revealed a substantial underestimation of the current sandfly distribution and VL risk. The predicted areas affected by the 12 major species of sandflies and the high-risk areas for VL were found to be 37.9-1121.0% and 136.6% larger, respectively, than the observed range in the areas. The future global changes were projected to decrease the risk of mountain-type zoonotic VL (MT-ZVL), but anthroponotic VL (AVL) and desert-type zoonotic VL (DT-ZVL) could remain stable or slightly increase.

CONCLUSIONS

Current field observations underestimate the spatial distributions of main sandfly species and VL in China. More active surveillance and field investigations are needed where high risks are predicted, especially in areas where the future risk of VL is projected to remain high or increase.

摘要

背景

了解和绘制沙蝇及其相关病原体 (SAP) 的分布情况对于指导监测和控制工作至关重要。然而,它们在中国的分布情况以及相关的风险负担仍知之甚少。

方法

我们利用 1940 年至 2022 年的文献数据绘制了沙蝇和 SAP 的分布情况。我们还利用 2014 年至 2018 年的监测数据绘制了人类内脏利什曼病 (VL) 病例的分布情况。通过应用机器学习,确定了 12 种主要沙蝇物种和 VL 的生态驱动因素,并在三种气候和社会经济变化情景下,对 2021-2040 年、2041-2060 年和 2061-2080 年三个时期的分布和风险进行了预测。

结果

在中国大陆,共报告了 47 种沙蝇物种,其中 12 种主要物种根据其生态位分为三个集群。此外,还确定了 6 种 SAP,包括两种原生动物、两种细菌和两种病毒。不同 VL 亚型的发病风险与特定媒介的分布风险密切相关。模型预测还显示,当前沙蝇分布和 VL 风险的估计值存在较大低估。预测的受 12 种主要沙蝇物种影响的地区和 VL 的高风险地区分别比观察到的范围大 37.9-1121.0%和 136.6%。预计未来的全球变化将降低山地型人畜共患 VL (MT-ZVL) 的风险,但人间型 VL (AVL) 和沙漠型人畜共患 VL (DT-ZVL) 可能保持稳定或略有增加。

结论

目前的实地观测低估了中国主要沙蝇物种和 VL 的空间分布情况。需要在预测风险较高的地区进行更积极的监测和实地调查,特别是在未来 VL 风险预计保持较高或增加的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/11251628/84bd6e97584f/pntd.0012291.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验