Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
Institut für Mikrobiologie, Universität Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria.
J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Aug 15;1244:124237. doi: 10.1016/j.jchromb.2024.124237. Epub 2024 Jul 10.
Microbial volatile organic compounds (MVOCs) are thought to play a key role in the interactions between mycoparasitic fungi, such as the biocontrol agent Trichoderma atroviride (T. atroviride), and their environment. However, the analysis of MVOC emissions from fungal samples is challenging because of low analyte concentrations, typically in the ppb-range, and the complex chemical nature of biological samples. In a recent study using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) to determine MVOC emissions from T. atroviride, many product ions were unspecific, as they could arise from a large number of possible analytes. The aim of the present study was to determine whether fast gas chromatography (fast-GC) coupled to PTR-ToF-MS could be used to overcome this issue and constitute a suitable on-line, near real-time method to identify and quantify fungal MVOC emissions in the ppb-to-ppm regime. Using gas standards of eleven MVOCs known to be emitted by T. atroviride such as 6-amyl-α-pyrone (6-PP), 2-pentylfuran, 1-octen-3-ol, 2-heptanone, 3-octanone, 2-methyl-1-propanol, 2-pentanone, 3-methyl-1-butanol, 3-methylbutanal, acetone and ethanol, we developed a fast-GC method with a total runtime of 180 s which significantly enhances the analytical specificity of PTR-ToF-MS compared to conventional PTR-ToF-MS without fast-GC separation. Limits of detection were on the order of 0.1-4 ppb. The increased analytical specificity demonstrated notable benefits, especially for MVOCs having partially overlapping distributions of product ions when analyzed directly using PTR-ToF-MS. In order to demonstrate the applicability of the analytical method, we analysed T. atroviride samples in four biological replicates twice daily over a duration of five days. Using the fast-GC method, nine out of the eleven MVOC species considered in this study in the headspace of T. atroviride could be identified and quantified and their time evolution over the five-day incubation period determined. The measured volume mixing ratios (VMRs) ranged from single-digit ppb (2-pentylfuran) up to few ppm (6-PP and ethanol), with the other compounds in the 10-to-100-ppb range (1-octen-3-ol, 2-heptanone, 2-methyl-1-propanol, 3-methyl-1-butanol, 3-methylbutanal and acetone). Our results suggest that fast-GC-PTR-ToF-MS is a method well-suited for the analysis of gas-phase samples of biological origin, including but not limited to (mycoparasitic) fungi, in a wide range of VMRs from sub-ppb to few-ppm.
微生物挥发性有机化合物(MVOCs)被认为在真菌之间的相互作用中起着关键作用,例如生防真菌拟青霉(T. atroviride)。然而,由于分析物浓度低,通常在 ppb 范围内,以及生物样品的复杂化学性质,真菌样品中 MVOC 排放的分析具有挑战性。在最近一项使用质子转移反应-飞行时间质谱(PTR-ToF-MS)来确定 T. atroviride 的 MVOC 排放的研究中,许多产物离子是特异性的,因为它们可能来自大量可能的分析物。本研究的目的是确定快速气相色谱(fast-GC)与 PTR-ToF-MS 结合是否可用于克服这一问题,并构成一种合适的在线、近实时方法,以确定和量化 ppb 至 ppm 范围内真菌 MVOC 排放。使用 11 种已知由 T. atroviride 排放的 MVOC 的气体标准品,如 6-戊基-α-吡喃酮(6-PP)、2-戊基呋喃、1-辛烯-3-醇、2-庚酮、3-辛酮、2-甲基-1-丙醇、2-戊酮、3-甲基-1-丁醇、3-甲基丁醛、丙酮和乙醇,我们开发了一种总运行时间为 180 s 的 fast-GC 方法,与没有 fast-GC 分离的常规 PTR-ToF-MS 相比,显著提高了 PTR-ToF-MS 的分析特异性。检测限为 0.1-4 ppb。增加的分析特异性显示出明显的好处,特别是对于在直接使用 PTR-ToF-MS 分析时具有部分重叠产物离子分布的 MVOC 时。为了证明分析方法的适用性,我们在五天的时间内每天两次对四个生物重复的 T. atroviride 样品进行了分析。使用 fast-GC 方法,可以鉴定和定量本研究中考虑的 11 种 MVOC 物种中的 9 种,并且可以确定它们在五天培养期间的时间演变。测量的体积混合比(VMR)范围从个位数 ppb(2-戊基呋喃)到几个 ppm(6-PP 和乙醇),其他化合物在 10 到 100-ppb 范围内(1-辛烯-3-醇、2-庚酮、2-甲基-1-丙醇、3-甲基-1-丁醇、3-甲基丁醛和丙酮)。我们的结果表明,fast-GC-PTR-ToF-MS 是一种非常适合分析生物源气相样品的方法,包括但不限于(菌寄生)真菌,其 VMR 范围从亚 ppb 到几个 ppm。