University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
CAS Institute of Healthcare Technologies, Nanjing 210000, People's Republic of China.
Physiol Meas. 2024 Jul 29;45(7). doi: 10.1088/1361-6579/ad63ee.
The autonomic nervous system (ANS) plays a critical role in regulating not only cardiac functions but also various other physiological processes, such as respiratory rate, digestion, and metabolic activities. The ANS is divided into the sympathetic and parasympathetic nervous systems, each of which has distinct but complementary roles in maintaining homeostasis across multiple organ systems in response to internal and external stimuli. Early detection of ANS dysfunctions, such as imbalances between the sympathetic and parasympathetic branches or impairments in the autonomic regulation of bodily functions, is crucial for preventing or slowing the progression of cardiovascular diseases. These dysfunctions can manifest as irregularities in heart rate, blood pressure regulation, and other autonomic responses essential for maintaining cardiovascular health. Traditional methods for analyzing ANS activity, such as heart rate variability (HRV) analysis and muscle sympathetic nerve activity recording, have been in use for several decades. Despite their long history, these techniques face challenges such as poor temporal resolution, invasiveness, and insufficient sensitivity to individual physiological variations, which limit their effectiveness in personalized health assessments.This study aims to introduce the open-loop Mathematical Model of Autonomic Regulation of the Cardiac System under Supine-to-stand Maneuver (MMARCS) to overcome the limitations of existing ANS analysis methods. The MMARCS model is designed to offer a balance between physiological fidelity and simplicity, focusing on the ANS cardiac control subsystems' input-output curve. The MMARCS model simplifies the complex internal dynamics of ANS cardiac control by emphasizing input-output relationships and utilizing sensitivity analysis and parameter subset selection to increase model specificity and eliminate redundant parameters. This approach aims to enhance the model's capacity for personalized health assessments.The application of the MMARCS model revealed significant differences in ANS regulation between healthy (14 females and 19 males, age: 42 ± 18) and diabetic subjects (8 females and 6 males, age: 47 ± 14). Parameters indicated heightened sympathetic activity and diminished parasympathetic response in diabetic subjects compared to healthy subjects ( < 0.05). Additionally, the data suggested a more sensitive and potentially more reactive sympathetic response among diabetic subjects ( < 0.05), characterized by increased responsiveness and intensity of the sympathetic nervous system to stimuli, i.e. fluctuations in blood pressure, leading to more pronounced changes in heart rate, these phenomena can be directly reflected by gain parameters and time response parameters of the model.The MMARCS model represents an innovative computational approach for quantifying ANS functionality. This model guarantees the accuracy of physiological modeling while reducing mathematical complexity, offering an easy-to-implement and widely applicable tool for clinical measurements of cardiovascular health, disease progression monitoring, and home health monitoring through wearable technology.
自主神经系统(ANS)在调节心脏功能以及各种其他生理过程中起着至关重要的作用,例如呼吸频率、消化和代谢活动。ANS 分为交感神经系统和副交感神经系统,它们在响应内部和外部刺激时,在维持多个器官系统的内稳定方面具有不同但互补的作用。早期发现自主神经系统功能障碍,例如交感和副交感分支之间的平衡失调或身体功能的自主调节受损,对于预防或减缓心血管疾病的进展至关重要。这些功能障碍可以表现为心率不规则、血压调节异常和其他维持心血管健康的自主反应异常。传统的分析自主神经系统活动的方法,如心率变异性(HRV)分析和肌肉交感神经活动记录,已经使用了几十年。尽管这些技术历史悠久,但它们面临着时间分辨率差、侵入性和对个体生理变化的敏感性不足等挑战,这限制了它们在个性化健康评估中的有效性。
本研究旨在介绍仰卧位到站立位 maneuvers 下的自主调节的心脏系统的开环数学模型(MMARCS),以克服现有自主神经系统分析方法的局限性。MMARCS 模型旨在在生理逼真度和简单性之间取得平衡,侧重于自主神经系统心脏控制子系统的输入-输出曲线。MMARCS 模型通过强调输入-输出关系并利用敏感性分析和参数子集选择来简化自主神经系统心脏控制的复杂内部动力学,从而提高模型的特异性并消除冗余参数。这种方法旨在增强模型进行个性化健康评估的能力。
MMARCS 模型的应用揭示了健康组(14 名女性和 19 名男性,年龄:42±18)和糖尿病组(8 名女性和 6 名男性,年龄:47±14)之间自主神经系统调节的显著差异。与健康组相比,糖尿病组参数显示出交感神经活动增强和副交感神经反应减弱( < 0.05)。此外,数据表明糖尿病组的交感神经反应更敏感且可能更具反应性( < 0.05),表现为对刺激(即血压波动)的交感神经系统的反应性和强度增加,导致心率更明显的变化,这些现象可以直接反映在模型的增益参数和时间响应参数中。
MMARCS 模型代表了一种用于量化自主神经系统功能的创新计算方法。该模型在保证生理建模准确性的同时降低了数学复杂性,为通过可穿戴技术进行心血管健康的临床测量、疾病进展监测和家庭健康监测提供了易于实施且广泛适用的工具。