Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Genetics Laboratory, Children's Clinical University Hospital, Riga, Latvia.
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
Am J Hum Genet. 2024 Aug 8;111(8):1605-1625. doi: 10.1016/j.ajhg.2024.06.008. Epub 2024 Jul 15.
The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.
基因型优先方法在遗传诊断中的转变彻底改变了我们对神经发育障碍的理解,扩大了它们的分子和表型谱。Kleefstra 综合征(KLEFS1)是由 EHMT1 杂合不足引起的,表现出广泛的临床表现。EHMT1 编码 euchromatic histone methyltransferase-1-表观遗传机制的关键组成部分。我们招募了 209 名带有罕见 EHMT1 变体的个体,并进行了全面的分子在体和体外测试,以及对鉴定变体的 DNA 甲基化(DNAm)特征分析。我们将 191 名个体的变体(重新)归类为可能致病性/致病性(分子上确认 Kleefstra 综合征)。我们提供了 Kleefstra 综合征的更新和更广泛的临床和分子谱,包括智力正常和家族性发生的个体。EHMT1 变体的分析揭示了广泛的分子效应及其相关表型,包括不同的基因型-表型关联。值得注意的是,我们表明,蛋白改变变体(PAV)破坏锚重复结构域的“读取器”功能会导致 KLEFS1 特异性 DNAm 特征和更温和的表型,而仅破坏 SET 结构域的“写入器”甲基转移酶活性则不会导致 KLEFS1 DNAm 特征或典型的 KLEFS1 表型。同样,N 端截断变体导致无 DNAm 特征的温和表型。我们展示了如何通过全面的变体分析为疾病的发病机制和 DNAm 特征提供深入的见解。总之,本研究全面概述了 KLEFS1 和 EHMT1,揭示了其更广泛的谱,并加深了我们对其分子机制的理解,从而为准确的变体解释、咨询和临床管理提供信息。