Suppr超能文献

用于代谢功能障碍相关脂肪性肝病患者心血管疾病风险分层的机器学习算法。

A machine learning algorithm for stratification of risk of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease.

机构信息

Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.

Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

出版信息

Eur J Intern Med. 2024 Nov;129:62-70. doi: 10.1016/j.ejim.2024.07.005. Epub 2024 Jul 16.

Abstract

BACKGROUND

Steatotic liver disease (SLD) is associated with adverse cardiac events. Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a condition characterized by the abnormal accumulation of hepatic lipids that is closely linked to five metabolic disorders: overweight or obesity, impaired glucose regulation, hypertension, hypertriglyceridemia, and low high-density lipoprotein-cholesterol. This retrospective study aimed to stratify the risk of cardiac events in patients with MASLD.

METHODS

Patients diagnosed with MASLD through ultrasonography were evaluated. We implemented a machine learning-based approach using a survival classification and regression tree (CART) model to stratify patients based on age, and the number of risk scores was investigated as a predictor of adverse outcomes in the derivation cohort. The primary outcomes were major adverse cardiac events (MACE) including cardiac death, nonfatal myocardial infarction, and revascularization due to coronary artery disease.

RESULTS

Among 2,962 patients (median age, 62 years; men, 53.5 %), the distribution of risk factors was as follows: one (10.8 %), two (28.5 %), three (33.0 %), four (19.9 %), and five (7.8 %). Over a median follow-up period of 6.8 years, 170 (5.7 %) patients experienced MACE. In the derivation cohort of 2,073 patients, the CART model identified age ≥60 years old and risk factors ≥4 as significant predictors of MACE. These findings were corroborated in a validation cohort of 889 patients. Patients meeting both criteria exhibited the highest risk of MACE (log-rank test, p < 0.001).

CONCLUSIONS

Patients aged ≥60 years old with risk factors ≥4 indicates at high risk of MACE in patients with MASLD. This risk stratification system provides a practical tool for identifying high-risk individuals in the MASLD population.

摘要

背景

脂肪性肝病与不良心脏事件相关。代谢功能障碍相关脂肪性肝病(MASLD)是一种以肝内脂质异常蓄积为特征的疾病,与五种代谢紊乱密切相关:超重或肥胖、葡萄糖调节受损、高血压、高三酰甘油血症和低高密度脂蛋白胆固醇血症。本回顾性研究旨在对 MASLD 患者的心脏事件风险进行分层。

方法

通过超声检查评估诊断为 MASLD 的患者。我们使用基于机器学习的生存分类和回归树(CART)模型对患者进行分层,分层因素为年龄,并研究了风险评分的数量作为发病队列中不良结局的预测因子。主要心脏不良事件(MACE)包括心脏死亡、非致死性心肌梗死和因冠状动脉疾病进行血运重建。

结果

在 2962 例患者中(中位年龄 62 岁;男性占 53.5%),危险因素的分布如下:1 个(10.8%)、2 个(28.5%)、3 个(33.0%)、4 个(19.9%)和 5 个(7.8%)。在中位随访 6.8 年期间,170 例(5.7%)患者发生 MACE。在 2073 例患者的发病队列中,CART 模型确定年龄≥60 岁和危险因素≥4 是 MACE 的显著预测因子。在 889 例验证队列中也得到了证实。同时符合这两个标准的患者发生 MACE 的风险最高(对数秩检验,p<0.001)。

结论

年龄≥60 岁且危险因素≥4 的 MASLD 患者发生 MACE 的风险较高。该风险分层系统为 MASLD 人群中识别高危个体提供了一种实用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验