Suppr超能文献

基于全光纤光子灯笼的模分复用重构光谱仪。

Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern.

作者信息

Liang Junrui, Ye Jun, Ma Xiaoya, Lu Yao, Li Jun, Xu Jiangming, Chen Zilun, Leng Jinyong, Jiang Zongfu, Zhou Pu

机构信息

College of Advanced Disciplinary Studies, National University of Defense Technology, Changsha, 410073, China.

Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China.

出版信息

Front Optoelectron. 2024 Jul 17;17(1):23. doi: 10.1007/s12200-024-00130-6.

Abstract

This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.

摘要

本研究展示了一种高精度的全光纤模式分复用(MDM)重建光谱仪(RS)。通过利用定制设计的3×1模式选择光子灯笼将不同的空间模式发射到多模光纤(MMF)中实现了模式分复用。这通过增加光散射过程促进了信息传输,从而将光谱更全面地编码为散斑图案。实现了2皮米的光谱分辨率和2000个光谱通道的恢复。与采用单模激发和双模激发的方法相比,三模激发方法分别将恢复误差降低了88%和50%。提出了一种基于交替模式调制的分辨率增强方法,达到了光谱相关函数3dB带宽的多模光纤极限。该概念验证研究可进一步扩展到涵盖各种可编程模式激发。它不仅简洁高效,而且非常适合各种高精度、高分辨率光谱测量场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dea4/11252098/12fc1a25b90e/12200_2024_130_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验