Department of Applied Sciences and Humanities, Parul Institute of Engineering and Technology, Parul University, Vadodara, Gujarat, 391760, India.
Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India.
Sci Rep. 2024 Jul 16;14(1):16358. doi: 10.1038/s41598-024-67274-5.
This study aims to optimize and evaluate drug release kinetics of Modified-Release (MR) solid dosage form of Quetiapine Fumarate MR tablets by using the Artificial Neural Networks (ANNs). In training the neural network, the drug contents of Quetiapine Fumarate MR tablet such as Sodium Citrate, Eudragit® L100 55, Eudragit® L30 D55, Lactose Monohydrate, Dicalcium Phosphate (DCP), and Glyceryl Behenate were used as variable input data and Drug Substance Quetiapine Fumarate, Triethyl Citrate, and Magnesium Stearate were used as constant input data for the formulation of the tablet. The in-vitro dissolution profiles of Quetiapine Fumarate MR tablets at ten different time points were used as a target data. Several layers together build the neural network by connecting the input data with the output data via weights, these weights show importance of input nodes. The training process optimises the weights of the drug product excipients to achieve the desired drug release through the simulation process in MATLAB software. The percentage drug release of predicted formulation matched with the manufactured formulation using the similarity factor (f), which evaluates network efficiency. The ANNs have enormous potential for rapidly optimizing pharmaceutical formulations with desirable performance characteristics.
本研究旨在通过人工神经网络(ANNs)优化和评估富马酸喹硫平缓释片(Quetiapine Fumarate MR)的药物释放动力学。在训练神经网络时,将 Quetiapine Fumarate MR 片剂的药物含量(如柠檬酸三钠、Eudragit® L100 55、Eudragit® L30 D55、乳糖一水合物、磷酸氢二钙(DCP)和山嵛酸甘油酯)作为变量输入数据,而药物主成分富马酸喹硫平和柠檬酸三乙酯以及硬脂酸镁则作为常数输入数据,用于片剂的配方。将 Quetiapine Fumarate MR 片剂在十个不同时间点的体外溶解曲线作为目标数据。通过权重,将输入数据与输出数据连接在一起,多个层共同构成神经网络,这些权重显示了输入节点的重要性。通过在 MATLAB 软件中的模拟过程,训练过程优化了药物产品赋形剂的权重,以实现期望的药物释放。预测制剂的药物释放百分比与使用相似因子(f)制造的制剂相匹配,该因子评估网络效率。ANNs 在快速优化具有理想性能特征的药物制剂方面具有巨大潜力。