Suppr超能文献

基于多组学特征和机器学习计算框架建立肝细胞癌氧化应激线粒体相关预后模型。

Establishing an oxidative stress mitochondria-related prognostic model in hepatocellular carcinoma based on multi-omics characteristics and machine learning computational framework.

作者信息

Wei Yitian, Ma Lujuan, Peng Qian, Lu Lin

机构信息

Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

出版信息

Discov Oncol. 2024 Jul 16;15(1):287. doi: 10.1007/s12672-024-01147-1.

Abstract

Hepatocellular carcinoma (HCC) has high incidence and mortality rates worldwide. Damaged mitochondria are characterized by the overproduction of reactive oxygen species (ROS), which can promote cancer development. The prognostic value of the interplay between mitochondrial function and oxidative stress in HCC requires further investigation. Gene expression data of HCC samples were collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). We screened prognostic oxidative stress mitochondria-related (OSMT) genes at the bulk transcriptome level. Based on multiple machine learning algorithms, we constructed a consensus oxidative stress mitochondria-related signature (OSMTS), which contained 26 genes. In addition, we identified six of these genes as having a suitable prognostic value for OSMTS to reduce the difficulty of clinical application. Univariate and multivariate analyses verified the OSMTS as an independent prognostic factor for overall survival (OS) in HCC patients. The OSMTS-related nomogram demonstrated to be a powerful tool for the clinical diagnosis of HCC. We observed differences in biological function and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. The highest expression of the OSMTS was detected in hepatocytes at the single-cell transcriptome level. Hepatocytes in the high- and low-risk groups differed significantly in terms of biological function and intercellular communication. Moreover, at the spatial transcriptome level, high expression of OSMTS was mainly in regions enriched in hepatocytes and B cells. Potential drugs targeting specific risk subgroups were identified. Our study revealed that the OSMTS can serve as a promising tool for prognosis prediction and precise intervention in HCC patients.

摘要

肝细胞癌(HCC)在全球范围内具有较高的发病率和死亡率。受损的线粒体以活性氧(ROS)的过量产生为特征,ROS可促进癌症发展。HCC中线粒体功能与氧化应激之间相互作用的预后价值需要进一步研究。从癌症基因组图谱(TCGA)、基因表达综合数据库(GEO)和国际癌症基因组联盟(ICGC)收集了HCC样本的基因表达数据。我们在整体转录组水平筛选了与氧化应激线粒体相关(OSMT)的预后基因。基于多种机器学习算法,我们构建了一个包含26个基因的氧化应激线粒体相关共识特征(OSMTS)。此外,我们确定其中6个基因对OSMTS具有合适的预后价值,以降低临床应用的难度。单因素和多因素分析证实OSMTS是HCC患者总生存期(OS)的独立预后因素。OSMTS相关的列线图被证明是HCC临床诊断的有力工具。我们观察到高风险组和低风险组在肿瘤微环境中的生物学功能和免疫细胞浸润存在差异。在单细胞转录组水平上,肝细胞中检测到OSMTS的最高表达。高风险组和低风险组的肝细胞在生物学功能和细胞间通讯方面存在显著差异。此外,在空间转录组水平上,OSMTS的高表达主要集中在富含肝细胞和B细胞的区域。确定了针对特定风险亚组的潜在药物。我们的研究表明,OSMTS可作为预测HCC患者预后和进行精准干预的有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffc7/11252104/e64b3a9fc096/12672_2024_1147_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验