Thota Veeranjaneyulu, Puddu Valeria, Perry Carole C
Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
Langmuir. 2024 Jul 16;40(30):15512-9. doi: 10.1021/acs.langmuir.4c01108.
Phage display panning is a powerful tool to select strong peptide binders to a given target, and when applied to inorganic materials (e.g., silica) as a target, it provides information on binding events and molecular recognition at the peptide-mineral interface. The panning process has limitations with the phage chemical elution being affected by bias toward positively charged binders, resulting in the potential loss of information on binder diversity; the presence of fast growing phages with an intrinsic growth advantage; and the presence of false positives from target unrelated peptides. To overcome some of these limitations, we developed a panning approach based on the sequential use of different eluents (Gly-HCl, pH-2.2; MgCl, pH-6.1; and TEA, pH-11.0), or pH conditions (Gly-HCl 2.2 < pH < 11.0) that allows the identification of a diverse and comprehensive pool of strong binders. We have assessed and tested the authenticity of the identified silica binders via a complementary experimental (in vivo phage recovery rates and TEM imaging) and bioinformatics approach. We provide experimental evidence of the nonspecificity of the Gly-HCl eluent as typically used. Using a fluorimetric assay, we investigate in vitro binding of two peptides that differ by pI-S4 (HYIDFRW, pI 7.80) and S5 (YSLKQYQ, pI 9.44)─modified at the C terminal with an amide group to simulate net charges in the phage display system, confirming the vital role of electrostatic interactions as driving binding forces in the phage panning process. The presented optimized phage panning approach provides an opportunity to match known surface interactions at play with suitable elution conditions; to select only sequences relevant to a particular interfacial system. The approach has the potential to open up avenues to design interfacial systems to advance our understanding of peptide-assisted mineral growth, among other possibilities.
噬菌体展示淘选是一种用于筛选与特定靶标具有强结合能力的肽段的强大工具。当将其应用于无机材料(如二氧化硅)作为靶标时,它能提供有关肽 - 矿物界面结合事件和分子识别的信息。淘选过程存在局限性,噬菌体化学洗脱受对带正电荷结合物的偏好影响,导致结合物多样性信息可能丢失;存在具有内在生长优势的快速生长噬菌体;以及存在与靶标无关肽段产生的假阳性。为克服其中一些局限性,我们开发了一种基于依次使用不同洗脱液(甘氨酸 - 盐酸,pH - 2.2;氯化镁,pH - 6.1;和三乙胺,pH - 11.0)或pH条件(2.2 < pH < 11.0的甘氨酸 - 盐酸)的淘选方法,该方法能够鉴定出多样化且全面的强结合物库。我们通过互补的实验方法(体内噬菌体回收率和透射电镜成像)和生物信息学方法评估并测试了所鉴定的二氧化硅结合物的真实性。我们提供了通常使用的甘氨酸 - 盐酸洗脱液非特异性的实验证据。使用荧光测定法,我们研究了两种在C末端用酰胺基团修饰以模拟噬菌体展示系统中的净电荷的肽段(pI - S4(HYIDFRW,pI 7.80)和S5(YSLKQYQ,pI 9.44))的体外结合,证实了静电相互作用作为噬菌体淘选过程中驱动结合力的关键作用。所提出的优化噬菌体淘选方法提供了一个机会,使已知的表面相互作用与合适的洗脱条件相匹配;仅选择与特定界面系统相关的序列。该方法有可能开辟设计界面系统的途径,以增进我们对肽辅助矿物生长等方面的理解。