Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.
The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China.
Biotechnol J. 2024 Jul;19(7):e2400287. doi: 10.1002/biot.202400287.
The d-amino acid oxidase (DAAO) is pivotal in obtaining optically pure l-glufosinate (l-PPT) by converting d-glufosinate (d-PPT) to its deamination product. We screened and designed a Rasamsonia emersonii DAAO (ReDAAO), making it more suitable for oxidizing d-PPT. Using Caver 3.0, we delineated three substrate binding pockets and, via alanine scanning, identified nearby key residues. Pinpointing key residues influencing activity, we applied virtual saturation mutagenesis (VSM), and experimentally validated mutants which reduced substrate binding energy. Analysis of positive mutants revealed elongated side-chain prevalence in substrate binding pocket periphery. Although computer-aided approaches can rapidly identify advantageous mutants and guide further design, the mutations obtained in the first round may not be suitable for combination with other advantageous mutations. Therefore, each round of combination requires reasonable iteration. Employing VSM-assisted screening multiple times and after four rounds of combining mutations, we ultimately obtained a mutant, N53V/F57Q/V94R/V242R, resulting in a mutant with a 5097% increase in enzyme activity compared to the wild type. It provides valuable insights into the structural determinants of enzyme activity and introduces a novel rational design procedure.
D-氨基酸氧化酶(DAAO)在通过将 D-草铵膦(d-PPT)转化为脱氨产物来获得光学纯 L-草铵膦(L-PPT)方面起着关键作用。我们筛选并设计了一株雷散囊菌 DAAO(ReDAAO),使其更适合氧化 d-PPT。我们使用 Caver 3.0 描绘了三个底物结合口袋,并通过丙氨酸扫描确定了附近的关键残基。通过确定影响活性的关键残基,我们应用了虚拟饱和诱变(VSM),并实验验证了降低底物结合能的突变体。对阳性突变体的分析表明,在底物结合口袋周围存在延伸的侧链。虽然计算机辅助方法可以快速识别有利的突变体并指导进一步的设计,但第一轮获得的突变可能不适合与其他有利的突变相结合。因此,每一轮的组合都需要合理的迭代。我们采用 VSM 辅助筛选多次,并在四轮突变组合后,最终得到一个突变体 N53V/F57Q/V94R/V242R,其酶活性比野生型提高了 5097%。这为酶活性的结构决定因素提供了有价值的见解,并引入了一种新的合理设计程序。