Suppr超能文献

基于机器学习的声门下低度狭窄的内镜检测:原理验证。

Using Machine Learning for Endoscopic Detection of Low-Grade Subglottic Stenosis: A Proof of Principle.

机构信息

Creighton University School of Medicine, Phoenix, Arizona, USA.

Department of Otolaryngology- Head and Neck Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.

出版信息

Otolaryngol Head Neck Surg. 2024 Oct;171(4):1254-1256. doi: 10.1002/ohn.901. Epub 2024 Jul 17.

Abstract

The current study trains, tests, and evaluates a deep learning algorithm to detect subglottic stenosis (SGS) on endoscopy. A retrospective review of patients undergoing microlaryngoscopy-bronchoscopy was performed. A pretrained image classifier (Resnet50) was retrained and tested on 159 images of airways taken at the glottis, 106 normal-sized airways, and 122 with SGS. Data augmentation was performed given the small sample size to prevent overfitting. Overall model accuracy was 73.3% (SD: 3.8). Precision and recall for stenosis were 77.3% (SD: 4.0) and 72.7 (SD: 4.0). F1 score for the detection of stenosis was 0.75 (SD: 0.04). Precision and recall for normal-sized images were lower at 69% (SD: 4.35) and 74% (SD: 4), with an F1 score of 0.71 (SD: 0.04). This study demonstrates that an image classification algorithm can identify SGS on endoscopic images. Work is needed to improve diagnostic accuracy for eventual deployment of the algorithm into clinical care.

摘要

本研究训练、测试和评估了一种深度学习算法,以检测内窥镜下的声门下狭窄(SGS)。对接受喉显微支气管镜检查的患者进行了回顾性研究。在对 159 张声门处气道图像、106 张正常大小气道图像和 122 张 SGS 气道图像进行数据扩充以防止过拟合后,对预训练的图像分类器(Resnet50)进行了重新训练和测试。总体模型准确率为 73.3%(SD:3.8)。狭窄的精确率和召回率分别为 77.3%(SD:4.0)和 72.7%(SD:4.0)。狭窄检测的 F1 得分为 0.75(SD:0.04)。正常大小图像的精确率和召回率分别为 69%(SD:4.35)和 74%(SD:4),F1 得分为 0.71(SD:0.04)。这项研究表明,图像分类算法可以识别内窥镜下的 SGS。需要进一步努力提高诊断准确性,以便最终将该算法应用于临床护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验