Creighton University School of Medicine, Phoenix, Arizona, USA.
Department of Otolaryngology- Head and Neck Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
Otolaryngol Head Neck Surg. 2024 Oct;171(4):1254-1256. doi: 10.1002/ohn.901. Epub 2024 Jul 17.
The current study trains, tests, and evaluates a deep learning algorithm to detect subglottic stenosis (SGS) on endoscopy. A retrospective review of patients undergoing microlaryngoscopy-bronchoscopy was performed. A pretrained image classifier (Resnet50) was retrained and tested on 159 images of airways taken at the glottis, 106 normal-sized airways, and 122 with SGS. Data augmentation was performed given the small sample size to prevent overfitting. Overall model accuracy was 73.3% (SD: 3.8). Precision and recall for stenosis were 77.3% (SD: 4.0) and 72.7 (SD: 4.0). F1 score for the detection of stenosis was 0.75 (SD: 0.04). Precision and recall for normal-sized images were lower at 69% (SD: 4.35) and 74% (SD: 4), with an F1 score of 0.71 (SD: 0.04). This study demonstrates that an image classification algorithm can identify SGS on endoscopic images. Work is needed to improve diagnostic accuracy for eventual deployment of the algorithm into clinical care.
本研究训练、测试和评估了一种深度学习算法,以检测内窥镜下的声门下狭窄(SGS)。对接受喉显微支气管镜检查的患者进行了回顾性研究。在对 159 张声门处气道图像、106 张正常大小气道图像和 122 张 SGS 气道图像进行数据扩充以防止过拟合后,对预训练的图像分类器(Resnet50)进行了重新训练和测试。总体模型准确率为 73.3%(SD:3.8)。狭窄的精确率和召回率分别为 77.3%(SD:4.0)和 72.7%(SD:4.0)。狭窄检测的 F1 得分为 0.75(SD:0.04)。正常大小图像的精确率和召回率分别为 69%(SD:4.35)和 74%(SD:4),F1 得分为 0.71(SD:0.04)。这项研究表明,图像分类算法可以识别内窥镜下的 SGS。需要进一步努力提高诊断准确性,以便最终将该算法应用于临床护理。