Suppr超能文献

基于人工智能模型的可穿戴传感器用于人类活动识别。

Wearable sensors based on artificial intelligence models for human activity recognition.

作者信息

Alarfaj Mohammed, Al Madini Azzam, Alsafran Ahmed, Farag Mohammed, Chtourou Slim, Afifi Ahmed, Ahmad Ayaz, Al Rubayyi Osama, Al Harbi Ali, Al Thunaian Mustafa

机构信息

Department of Electrical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia.

Department of Computer Science, College of Computer Science and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia.

出版信息

Front Artif Intell. 2024 Jun 27;7:1424190. doi: 10.3389/frai.2024.1424190. eCollection 2024.

Abstract

Human motion detection technology holds significant potential in medicine, health care, and physical exercise. This study introduces a novel approach to human activity recognition (HAR) using convolutional neural networks (CNNs) designed for individual sensor types to enhance the accuracy and address the challenge of diverse data shapes from accelerometers, gyroscopes, and barometers. Specific CNN models are constructed for each sensor type, enabling them to capture the characteristics of their respective sensors. These adapted CNNs are designed to effectively process varying data shapes and sensor-specific characteristics to accurately classify a wide range of human activities. The late-fusion technique is employed to combine predictions from various models to obtain comprehensive estimates of human activity. The proposed CNN-based approach is compared to a standard support vector machine (SVM) classifier using the one--rest methodology. The late-fusion CNN model showed significantly improved performance, with validation and final test accuracies of 99.35 and 94.83% compared to the conventional SVM classifier at 87.07 and 83.10%, respectively. These findings provide strong evidence that combining multiple sensors and a barometer and utilizing an additional filter algorithm greatly improves the accuracy of identifying different human movement patterns.

摘要

人体运动检测技术在医学、医疗保健和体育锻炼领域具有巨大潜力。本研究引入了一种新颖的人体活动识别(HAR)方法,即使用针对单个传感器类型设计的卷积神经网络(CNN),以提高准确性并应对来自加速度计、陀螺仪和气压计的不同数据形状的挑战。针对每种传感器类型构建特定的CNN模型,使其能够捕捉各自传感器的特征。这些经过调整的CNN旨在有效处理不同的数据形状和传感器特定特征,以准确分类广泛的人体活动。采用后期融合技术将各种模型的预测结果相结合,以获得人体活动的综合估计。使用一对多方法将所提出的基于CNN的方法与标准支持向量机(SVM)分类器进行比较。后期融合CNN模型表现出显著提高的性能,验证和最终测试准确率分别为99.35%和94.83%,而传统SVM分类器的准确率分别为87.07%和83.10%。这些发现提供了有力证据,表明结合多个传感器和一个气压计并利用额外的滤波算法可大大提高识别不同人体运动模式的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bdd/11250658/9917626fce8e/frai-07-1424190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验