Institute of Information TechnologyJahangirnagar University Savar Dhaka 1342 Bangladesh.
SINTEF Digital 0373 Oslo Norway.
IEEE J Transl Eng Health Med. 2022 May 25;10:2700316. doi: 10.1109/JTEHM.2022.3177710. eCollection 2022.
Human Activity Recognition (HAR) systems are devised for continuously observing human behavior - primarily in the fields of environmental compatibility, sports injury detection, senior care, rehabilitation, entertainment, and the surveillance in intelligent home settings. Inertial sensors, e.g., accelerometers, linear acceleration, and gyroscopes are frequently employed for this purpose, which are now compacted into smart devices, e.g., smartphones. Since the use of smartphones is so widespread now-a-days, activity data acquisition for the HAR systems is a pressing need. In this article, we have conducted the smartphone sensor-based raw data collection, namely , using an Android-OS-based application for accelerometer, gyroscope, and linear acceleration. Furthermore, a hybrid deep learning model is proposed, coupling convolutional neural network and long-short term memory network (CNN-LSTM), empowered by the self-attention algorithm to enhance the predictive capabilities of the system. In addition to our collected dataset (), the model has been evaluated with some benchmark datasets, e.g., MHEALTH, and UCI-HAR to demonstrate the comparative performance of our model. When compared to other models, the proposed model has an accuracy of 99.93% using our collected data, and 98.76% and 93.11% using data from MHEALTH and UCI-HAR databases respectively, indicating its efficacy in recognizing human activity recognition. We hope that our developed model could be applicable in the clinical settings and collected data could be useful for further research.
人体活动识别 (HAR) 系统旨在持续观察人类行为 - 主要应用于环境兼容性、运动损伤检测、老年人护理、康复、娱乐以及智能家居环境的监控等领域。为此,通常使用惯性传感器,例如加速度计、线性加速度和陀螺仪,这些传感器现在已被集成到智能手机等智能设备中。由于现在智能手机的使用非常广泛,因此 HAR 系统需要进行活动数据采集。在本文中,我们进行了基于智能手机传感器的原始数据采集,即使用基于 Android-OS 的应用程序采集加速度计、陀螺仪和线性加速度的数据。此外,我们提出了一种混合深度学习模型,结合卷积神经网络和长短时记忆网络 (CNN-LSTM),并采用自注意力算法来增强系统的预测能力。除了我们收集的数据集 (), 还使用了一些基准数据集,如 MHEALTH 和 UCI-HAR 对模型进行了评估,以展示我们模型的比较性能。与其他模型相比,我们提出的模型在使用我们收集的数据时的准确率为 99.93%,在使用 MHEALTH 和 UCI-HAR 数据库的数据时的准确率分别为 98.76%和 93.11%,表明其在识别人体活动方面的有效性。我们希望我们开发的模型可以应用于临床环境,并且我们收集的数据可以对进一步的研究有所帮助。