Suppr超能文献

涉及配备驾驶员预警系统车辆的致命撞车事故:使用相关随机参数有序逻辑回归建模方法识别风险因素。

Fatal crashes involving vehicles with driver warning systems: Identifying risk factors using a correlated random parameters ordered logit modeling approach.

作者信息

Gajera Hardik, Pulugurtha Srinivas S

机构信息

Civil & Environmental Engineering Department, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223-0001, USA.

出版信息

Heliyon. 2024 Jun 19;10(12):e33226. doi: 10.1016/j.heliyon.2024.e33226. eCollection 2024 Jun 30.

Abstract

Recent advancements in vehicular technology are expected to enhance traffic safety by either warning the drivers or by automating the tasks related to driving to reduce the human driver's involvement. The driver warning systems (DWSs) are designed to warn drivers in unsafe situations such as forward collision, lane departure, or when changing lanes with vehicles in blind spot areas. Although these features are designed to enhance safety, recent crash data shows vehicles with these features are still getting involved in crashes, making it necessary to identify the contributing factors. Further, it also requires research to quantify the benefits of vehicles with one or multiple DWS in terms of safety during multivehicle crashes. This study presents a methodological framework to compare factors affecting fatal crashes involving vehicles with no, one and two DWSs. A three-step method is proposed to incorporate unobserved heterogeneity while modeling. Fixed parameter and correlated random parameter order logit models are employed. The results shows that correlated random parameters ordered logit model outperforms traditional fixed parameter ordered logit model. Vehicles equipped with DWSs are safer than vehicles without DWSs during wet or snowy road conditions, when the vehicle skids laterally or longitudinally, and at intersections. Vehicles with one or both DWSs can reduce drink-and-drive and speeding-related crash involvement than vehicles without DWSs. Female and elderly drivers are at a higher risk while driving a vehicle with one or both DWSs compared to driving a vehicle without DWSs, demanding vehicular modifications.

摘要

车辆技术的最新进展有望通过警告驾驶员或使与驾驶相关的任务自动化来减少人类驾驶员的参与,从而提高交通安全。驾驶员警告系统(DWS)旨在在不安全的情况下警告驾驶员,例如前方碰撞、车道偏离,或者在盲点区域有车辆时变道。尽管这些功能旨在提高安全性,但最近的碰撞数据显示,配备这些功能的车辆仍会卷入碰撞事故,因此有必要确定促成因素。此外,还需要进行研究,以量化配备一个或多个DWS的车辆在多车碰撞事故中的安全效益。本研究提出了一个方法框架,用于比较影响涉及没有DWS、有一个DWS和有两个DWS的车辆的致命碰撞事故的因素。提出了一种三步法,在建模时纳入未观察到的异质性。采用固定参数和相关随机参数有序逻辑模型。结果表明,相关随机参数有序逻辑模型优于传统的固定参数有序逻辑模型。在潮湿或下雪的道路条件下、车辆横向或纵向打滑时以及在十字路口,配备DWS的车辆比没有DWS的车辆更安全。与没有DWS的车辆相比,配备一个或两个DWS的车辆可以减少与酒后驾车和超速相关的碰撞事故。与驾驶没有DWS的车辆相比,女性和老年驾驶员在驾驶配备一个或两个DWS的车辆时面临更高的风险,这需要对车辆进行改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9224/11250873/452cc6dd6131/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验