Zhang Hao, Pang Bo, Di Andi, Chang Jian, Héraly Frédéric, Sikdar Anirban, Pang Kanglei, Guo Xin, Li Jiansheng, Yuan Jiayin, Zhang Miao
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
Small. 2024 Nov;20(45):e2403518. doi: 10.1002/smll.202403518. Epub 2024 Jul 17.
2D TiCT MXene-based film electrodes with metallic conductivity and high pseudo-capacitance are of considerable interest in cutting-edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling-prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in-plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g and long-term stability in 500 mg L NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X-ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra-short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.
具有金属导电性和高赝电容的二维TiCT MXene基薄膜电极在电容去离子化(CDI)的前沿研究中备受关注。然而,其实际应用的进一步发展受到其固有局限性的阻碍,例如层状堆叠的曲折离子扩散路径、脆弱的化学稳定性以及亲水性MXene纳米片在水性环境中易于膨胀的特性。在此,建立了一种纳米多孔二维/二维异质结构策略,以利用多孔MXene(HMX)和多孔氧化石墨烯(HGO)纳米片的优点,优化离子传输捷径,缓解常见的重新堆叠问题,并提高薄膜的机械和化学稳定性。在这种设计中,两种精心挑选的构建块中的纳米级面内孔在复合层压板中建立离子扩散捷径,以加速离子的传输和存储。直接结果是,HMX/rHGO薄膜在1.2 V下在500 mg L NaCl溶液中表现出57.91 mg g的显著脱盐能力和长期稳定性。此外,分子动力学模拟和非原位广角X射线散射共同表明,导电的二维/二维网络和超短离子扩散通道在HMX/rHGO薄膜的离子嵌入/脱嵌过程中起关键作用。该研究为具有卓越离子传输效率的独立式CDI电极开辟了一种替代设计概念。