Hao Xinyue, Tian Zhuangfei, Yao Zhouchang, Zang Tienan, Song Shucheng, Lin Liang, Qiao Tianzhang, Huang Ling, Fu Haigen
NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
Angew Chem Int Ed Engl. 2024 Oct 7;63(41):e202410112. doi: 10.1002/anie.202410112. Epub 2024 Sep 6.
Axially chiral biaryl compounds are ubiquitous scaffolds in natural products, bioactive molecules, chiral ligands and catalysts, but biocatalytic methods for their asymmetric synthesis are limited. Herein, we report a highly efficient biocatalytic route for the atroposelective synthesis of biaryls by dynamic kinetic resolution (DKR). This DKR approach features a transient six-membered aza-acetal-bridge-promoted racemization followed by an imine reductase (IRED)-catalyzed stereoselective reduction to construct the axial chirality under ambient conditions. Directed evolution of an IRED from Streptomyces sp. GF3546 provided a variant (S-IRED-Ss-M11) capable of catalyzing the DKR process to access a variety of biaryl aminoalcohols in high yields and excellent enantioselectivities (up to 98 % yield and >99 : 1 enantiomeric ratio). Molecular dynamics simulation studies on the S-IRED-Ss-M11 variant revealed the origin of its improved activity and atroposelectivity. By exploiting the substrate promiscuity of IREDs and the power of directed evolution, our work further extends the biocatalysts' toolbox to construct challenging axially chiral molecules.
轴手性联芳基化合物是天然产物、生物活性分子、手性配体和催化剂中普遍存在的骨架,但用于其不对称合成的生物催化方法有限。在此,我们报道了一种通过动态动力学拆分(DKR)对映选择性合成联芳基化合物的高效生物催化途径。这种DKR方法的特点是通过一个瞬态的六元氮杂缩醛桥促进外消旋化,然后由亚胺还原酶(IRED)催化立体选择性还原,在环境条件下构建轴手性。对来自链霉菌属GF3546的IRED进行定向进化,得到了一个变体(S-IRED-Ss-M11),它能够催化DKR过程,以高收率和优异的对映选择性(高达98%的收率和>99:1的对映体比例)获得各种联芳基氨基醇。对S-IRED-Ss-M11变体的分子动力学模拟研究揭示了其活性和对映选择性提高的原因。通过利用IREDs的底物选择性和定向进化的能力,我们的工作进一步扩展了生物催化剂工具箱,以构建具有挑战性的轴手性分子。