Suppr超能文献

水相铃木耦合反应中乳液滴内物种的积累与消耗与产率相关。

Buildup and Consumption of Species in Emulsion Droplets during Aqueous Suzuki Coupling Correlate with Yield.

作者信息

Peacock Hannah, Blum Suzanne A

机构信息

Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States.

出版信息

J Org Chem. 2024 Aug 2;89(15):10684-10692. doi: 10.1021/acs.joc.4c00918. Epub 2024 Jul 17.

Abstract

Fluorescence lifetime imaging microscopy (FLIM) provides spatiotemporal resolution of the changing composition of emulsion droplets during aqueous-surfactant Suzuki coupling. In contrast to previous investigations, the present experiments characterize the full course of a catalytic chemical reaction, addressing key questions about reaction species buildup and correlating these microscale behaviors with bench-scale product yields. At low concentrations of (active) catalyst, droplet environments are stable; however, at higher concentrations, emulsion droplet environments change markedly. These changes are consistent with the buildup and consumption of reaction species inside the droplets. A combination of FLIM and bright-field imaging pinpoints limitations in catalyst solubility as controlling rate and degree of buildup of species in droplets. These solubility limitations are also identified as the cause of a reaction induction period and an origin of the rate-and-reproducibility advantage obtained by adding THF cosolvent. The subsequent mechanistic model from these data led to a bench-scale reaction optimization, wherein premixing the catalyst components bypasses the catalyst induction period, resulting in a faster reaction. The understanding generated by FLIM thus provides an early example of how visualizing changes in droplet compositions on the microscale during ongoing aqueous-organic reactions can be leveraged for enhancing efficiencies in bench-scale reactions.

摘要

荧光寿命成像显微镜(FLIM)可提供水 - 表面活性剂铃木偶联过程中乳液滴组成变化的时空分辨率。与之前的研究不同,本实验对催化化学反应的全过程进行了表征,解决了有关反应物种积累的关键问题,并将这些微观行为与实验室规模的产物产率相关联。在低浓度(活性)催化剂下,液滴环境稳定;然而,在较高浓度下,乳液滴环境会发生显著变化。这些变化与液滴内反应物种的积累和消耗一致。FLIM与明场成像相结合,确定了催化剂溶解度的限制是控制液滴中物种积累速率和程度的因素。这些溶解度限制也被确定为反应诱导期的原因以及添加四氢呋喃共溶剂所获得的速率和重现性优势的来源。基于这些数据的后续机理模型导致了实验室规模反应的优化,其中预混合催化剂组分绕过了催化剂诱导期,从而实现了更快的反应。因此,FLIM所产生的认识提供了一个早期实例,说明了如何利用在正在进行的水 - 有机反应过程中微观尺度上液滴组成的变化来提高实验室规模反应的效率。

相似文献

1
Buildup and Consumption of Species in Emulsion Droplets during Aqueous Suzuki Coupling Correlate with Yield.
J Org Chem. 2024 Aug 2;89(15):10684-10692. doi: 10.1021/acs.joc.4c00918. Epub 2024 Jul 17.
2
Surfactant Micellar and Vesicle Microenvironments and Structures under Synthetic Organic Conditions.
J Am Chem Soc. 2023 Apr 5;145(13):7648-7658. doi: 10.1021/jacs.3c01574. Epub 2023 Mar 23.
3
Surfactant-Dependent Partitioning of Organics in Aqueous-Organic Reaction Systems.
J Org Chem. 2024 Jun 7;89(11):8267-8271. doi: 10.1021/acs.joc.4c00613. Epub 2024 May 16.
5
Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale.
Anal Bioanal Chem. 2022 Sep;414(23):6977-6987. doi: 10.1007/s00216-022-04266-2. Epub 2022 Aug 23.
6
Feedback in Flow for Accelerated Reaction Development.
Acc Chem Res. 2016 Sep 20;49(9):1786-96. doi: 10.1021/acs.accounts.6b00261. Epub 2016 Aug 15.
10
Controlled shrinkage and re-expansion of a single aqueous droplet inside an optical vortex trap.
J Phys Chem B. 2007 Mar 22;111(11):2806-12. doi: 10.1021/jp068902v. Epub 2007 Feb 27.

引用本文的文献

1
Three-Phase Emulsions during Cross-Coupling Reactions in Water.
J Org Chem. 2025 Aug 22;90(33):11883-11889. doi: 10.1021/acs.joc.5c01297. Epub 2025 Aug 13.

本文引用的文献

1
Surfactant-Dependent Partitioning of Organics in Aqueous-Organic Reaction Systems.
J Org Chem. 2024 Jun 7;89(11):8267-8271. doi: 10.1021/acs.joc.4c00613. Epub 2024 May 16.
2
Aqueous Micelles as Solvent, Ligand, and Reaction Promoter in Catalysis.
JACS Au. 2024 Jan 16;4(2):301-317. doi: 10.1021/jacsau.3c00605. eCollection 2024 Feb 26.
3
Fully Aqueous and Air-Compatible Cross-Coupling of Primary Alkyl Halides with Aryl Boronic Species: A Possible and Facile Method.
ACS Catal. 2023 Apr 24;13(9):6365-6374. doi: 10.1021/acscatal.3c00252. eCollection 2023 May 5.
4
Surfactant Micellar and Vesicle Microenvironments and Structures under Synthetic Organic Conditions.
J Am Chem Soc. 2023 Apr 5;145(13):7648-7658. doi: 10.1021/jacs.3c01574. Epub 2023 Mar 23.
5
Simplified Preparation of ppm Pd-Containing Nanoparticles as Catalysts for Chemistry in Water.
ACS Catal. 2023 Feb 17;13(5):3179-3186. doi: 10.1021/acscatal.3c00007. eCollection 2023 Mar 3.
6
Polymer Molecular Weight Determination via Fluorescence Lifetime.
J Am Chem Soc. 2022 Dec 14;144(49):22416-22420. doi: 10.1021/jacs.2c10036. Epub 2022 Dec 2.
7
Partition of the Reactive Species of the Suzuki-Miyaura Reaction between Aqueous and Micellar Environments.
J Phys Chem B. 2022 Nov 17;126(45):9408-9416. doi: 10.1021/acs.jpcb.2c04591. Epub 2022 Nov 4.
8
ppm Pd-Containing Nanoparticles as Catalysts for Negishi Couplings … in Water.
Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202209784. doi: 10.1002/anie.202209784. Epub 2022 Aug 22.
9
Real-Time Polymer Viscosity-Catalytic Activity Relationships on the Microscale.
J Am Chem Soc. 2022 Aug 3;144(30):13574-13585. doi: 10.1021/jacs.2c03711. Epub 2022 Jul 22.
10
Reactivity Differences of Rieke Zinc Arise Primarily from Salts in the Supernatant, Not in the Solids.
J Am Chem Soc. 2022 Jul 13;144(27):12081-12091. doi: 10.1021/jacs.2c02471. Epub 2022 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验