Peacock Hannah, Blum Suzanne A
Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States.
J Org Chem. 2024 Aug 2;89(15):10684-10692. doi: 10.1021/acs.joc.4c00918. Epub 2024 Jul 17.
Fluorescence lifetime imaging microscopy (FLIM) provides spatiotemporal resolution of the changing composition of emulsion droplets during aqueous-surfactant Suzuki coupling. In contrast to previous investigations, the present experiments characterize the full course of a catalytic chemical reaction, addressing key questions about reaction species buildup and correlating these microscale behaviors with bench-scale product yields. At low concentrations of (active) catalyst, droplet environments are stable; however, at higher concentrations, emulsion droplet environments change markedly. These changes are consistent with the buildup and consumption of reaction species inside the droplets. A combination of FLIM and bright-field imaging pinpoints limitations in catalyst solubility as controlling rate and degree of buildup of species in droplets. These solubility limitations are also identified as the cause of a reaction induction period and an origin of the rate-and-reproducibility advantage obtained by adding THF cosolvent. The subsequent mechanistic model from these data led to a bench-scale reaction optimization, wherein premixing the catalyst components bypasses the catalyst induction period, resulting in a faster reaction. The understanding generated by FLIM thus provides an early example of how visualizing changes in droplet compositions on the microscale during ongoing aqueous-organic reactions can be leveraged for enhancing efficiencies in bench-scale reactions.
荧光寿命成像显微镜(FLIM)可提供水 - 表面活性剂铃木偶联过程中乳液滴组成变化的时空分辨率。与之前的研究不同,本实验对催化化学反应的全过程进行了表征,解决了有关反应物种积累的关键问题,并将这些微观行为与实验室规模的产物产率相关联。在低浓度(活性)催化剂下,液滴环境稳定;然而,在较高浓度下,乳液滴环境会发生显著变化。这些变化与液滴内反应物种的积累和消耗一致。FLIM与明场成像相结合,确定了催化剂溶解度的限制是控制液滴中物种积累速率和程度的因素。这些溶解度限制也被确定为反应诱导期的原因以及添加四氢呋喃共溶剂所获得的速率和重现性优势的来源。基于这些数据的后续机理模型导致了实验室规模反应的优化,其中预混合催化剂组分绕过了催化剂诱导期,从而实现了更快的反应。因此,FLIM所产生的认识提供了一个早期实例,说明了如何利用在正在进行的水 - 有机反应过程中微观尺度上液滴组成的变化来提高实验室规模反应的效率。