Gu Yifan, Tao Huachao, Yang Xuelin
College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei, 443002, China.
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, Hubei, 443002, China.
Small. 2024 Nov;20(45):e2403864. doi: 10.1002/smll.202403864. Epub 2024 Jul 17.
Solid-state sodium metal batteries have attracted wide attention due to their high energy density, remarkable safety, and abundant sodium resources. However, the growth of Na dendrites and poor interfacial contact between Na metal anode and NaZrSiPO (NZSP) solid-state electrolytes severely limit their practical application. Herein, a wettable liquid metal (GaIn) interlayer significantly reduces the interfacial resistance and avoids the formation of voids at the Na/NZSP interface. Moreover, the GaNa and NaIn alloys at the interface caused by the spontaneous reaction of GaIn with Na metal enhance the bond of NZSP with Na anode, which provides a continuous Na diffusion pathway and homogeneous Na flux to suppress Na dendrite growth. The symmetric cell can cycle stably for over 6500 h at 0.05 mA cm and over 3000 h at 0.1 mA cm, with a critical current density of 0.8 mA cm at 25 °C, and the interfacial resistance is significantly reduced to 21.6 Ω from 1095.1 Ω. The full cell coupled with NaNiFeMnO also shows outstanding cycling performance, maintaining 85.1% capacity after 100 cycles at 0.5 C. This work demonstrates that the liquid metal interlayer has a large potential for the practical application of solid-state metal batteries.
固态钠金属电池因其高能量密度、卓越的安全性和丰富的钠资源而备受关注。然而,钠枝晶的生长以及钠金属负极与NaZrSiPO(NZSP)固态电解质之间较差的界面接触严重限制了它们的实际应用。在此,一种可润湿性液态金属(GaIn)中间层显著降低了界面电阻,并避免了在Na/NZSP界面形成空隙。此外,GaIn与钠金属的自发反应在界面处形成的GaNa和NaIn合金增强了NZSP与钠负极的结合力,这提供了连续的钠扩散途径和均匀的钠通量以抑制钠枝晶生长。对称电池在0.05 mA cm²下可稳定循环超过6500小时,在0.1 mA cm²下可稳定循环超过3000小时,在25℃时的临界电流密度为0.8 mA cm²,界面电阻从1095.1 Ω显著降低至21.6 Ω。与NaNiFeMnO耦合的全电池也表现出出色的循环性能,在0.5 C下100次循环后保持85.1%的容量。这项工作表明液态金属中间层在固态金属电池的实际应用中具有巨大潜力。