Suppr超能文献

通过结合图像文本信息与特征解缠实现多标签广义零样本胸部X光分类

Multi-Label Generalized Zero Shot Chest X-Ray Classification by Combining Image-Text Information With Feature Disentanglement.

作者信息

Mahapatra Dwarikanath, Jimeno Yepes Antonio, Bozorgtabar Behzad, Roy Sudipta, Ge Zongyuan, Reyes Mauricio

出版信息

IEEE Trans Med Imaging. 2025 Jan;44(1):31-43. doi: 10.1109/TMI.2024.3429471. Epub 2025 Jan 2.

Abstract

In fully supervised learning-based medical image classification, the robustness of a trained model depends on its exposure to various disease classes. Generalized Zero Shot Learning (GZSL) aims to predict both seen and novel unseen classes. While most GZSL approaches focus on single-label cases, chest X-rays often have multiple disease labels. We propose a novel multi-modal multi-label GZSL approach that leverages feature disentanglement and multi-modal information to synthesize features of unseen classes. Disease labels are processed through a pre-trained BioBert model to obtain text embeddings, which create a dictionary encoding similarity among labels. We use disentangled features and graph aggregation to learn a second dictionary of inter-label similarities, followed by clustering to identify representative vectors for each class. These dictionaries and representative vectors guide the feature synthesis step, generating realistic multi-label disease samples of seen and unseen classes. Our method outperforms competing methods in experiments on the NIH and CheXpert chest X-ray datasets.

摘要

在基于全监督学习的医学图像分类中,训练模型的鲁棒性取决于其对各种疾病类别的接触程度。广义零样本学习(GZSL)旨在预测已见过的和新的未见过的类别。虽然大多数GZSL方法专注于单标签情况,但胸部X光片通常有多个疾病标签。我们提出了一种新颖的多模态多标签GZSL方法,该方法利用特征解缠和多模态信息来合成未见过类别的特征。疾病标签通过预训练的BioBert模型进行处理以获得文本嵌入,从而创建一个编码标签间相似性的字典。我们使用解缠特征和图聚合来学习标签间相似性的第二个字典,然后进行聚类以识别每个类别的代表性向量。这些字典和代表性向量指导特征合成步骤,生成已见过和未见过类别的逼真的多标签疾病样本。在NIH和CheXpert胸部X光数据集上的实验中,我们的方法优于其他竞争方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验