Pirmani Ashkan, Oldenhof Martijn, Peeters Liesbet M, De Brouwer Edward, Moreau Yves
ESAT-STADIUS, KU Leuven, Leuven, Belgium.
Data Science Institute, Hasselt University, Diepenbeek, Belgium.
JMIR Form Res. 2024 Jul 17;8:e55496. doi: 10.2196/55496.
The integrity and reliability of clinical research outcomes rely heavily on access to vast amounts of data. However, the fragmented distribution of these data across multiple institutions, along with ethical and regulatory barriers, presents significant challenges to accessing relevant data. While federated learning offers a promising solution to leverage insights from fragmented data sets, its adoption faces hurdles due to implementation complexities, scalability issues, and inclusivity challenges.
This paper introduces Federated Learning for Everyone (FL4E), an accessible framework facilitating multistakeholder collaboration in clinical research. It focuses on simplifying federated learning through an innovative ecosystem-based approach.
The "degree of federation" is a fundamental concept of FL4E, allowing for flexible integration of federated and centralized learning models. This feature provides a customizable solution by enabling users to choose the level of data decentralization based on specific health care settings or project needs, making federated learning more adaptable and efficient. By using an ecosystem-based collaborative learning strategy, FL4E encourages a comprehensive platform for managing real-world data, enhancing collaboration and knowledge sharing among its stakeholders.
Evaluating FL4E's effectiveness using real-world health care data sets has highlighted its ecosystem-oriented and inclusive design. By applying hybrid models to 2 distinct analytical tasks-classification and survival analysis-within real-world settings, we have effectively measured the "degree of federation" across various contexts. These evaluations show that FL4E's hybrid models not only match the performance of fully federated models but also avoid the substantial overhead usually linked with these models. Achieving this balance greatly enhances collaborative initiatives and broadens the scope of analytical possibilities within the ecosystem.
FL4E represents a significant step forward in collaborative clinical research by merging the benefits of centralized and federated learning. Its modular ecosystem-based design and the "degree of federation" feature make it an inclusive, customizable framework suitable for a wide array of clinical research scenarios, promising to revolutionize the field through improved collaboration and data use. Detailed implementation and analyses are available on the associated GitHub repository.
临床研究结果的完整性和可靠性在很大程度上依赖于获取大量数据。然而,这些数据分散在多个机构,再加上伦理和监管障碍,给获取相关数据带来了重大挑战。虽然联邦学习为利用分散数据集中的见解提供了一个有前景的解决方案,但其采用因实施复杂性、可扩展性问题和包容性挑战而面临障碍。
本文介绍了面向大众的联邦学习(FL4E),这是一个便于临床研究中多利益相关方协作的可访问框架。它专注于通过一种创新的基于生态系统的方法简化联邦学习。
“联邦程度”是FL4E的一个基本概念,允许灵活整合联邦学习和集中学习模型。此功能通过允许用户根据特定医疗保健环境或项目需求选择数据分散程度,提供了一个可定制的解决方案,使联邦学习更具适应性和效率。通过使用基于生态系统的协作学习策略,FL4E鼓励建立一个管理真实世界数据的综合平台,加强其利益相关方之间的协作和知识共享。
使用真实世界医疗保健数据集评估FL4E的有效性突出了其以生态系统为导向和包容性的设计。通过在真实世界环境中将混合模型应用于两个不同的分析任务——分类和生存分析,我们有效地测量了各种情况下的“联邦程度”。这些评估表明,FL4E的混合模型不仅与完全联邦模型的性能相匹配,而且避免了通常与这些模型相关的大量开销。实现这种平衡极大地增强了协作计划,并拓宽了生态系统内分析可能性的范围。
FL4E通过融合集中学习和联邦学习的优点,在协作临床研究方面迈出了重要一步。其基于模块化生态系统的设计和“联邦程度”功能使其成为一个包容性、可定制的框架,适用于广泛的临床研究场景,有望通过改善协作和数据使用彻底改变该领域。相关GitHub存储库上提供了详细的实施和分析。