Suppr超能文献

用于跨机构事件发生时间分析的隐私保护联合生存支持向量机:算法开发与验证

Privacy-Preserving Federated Survival Support Vector Machines for Cross-Institutional Time-To-Event Analysis: Algorithm Development and Validation.

作者信息

Späth Julian, Sewald Zeno, Probul Niklas, Berland Magali, Almeida Mathieu, Pons Nicolas, Le Chatelier Emmanuelle, Ginès Pere, Solé Cristina, Juanola Adrià, Pauling Josch, Baumbach Jan

机构信息

Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany.

LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.

出版信息

JMIR AI. 2024 Mar 29;3:e47652. doi: 10.2196/47652.

Abstract

BACKGROUND

Central collection of distributed medical patient data is problematic due to strict privacy regulations. Especially in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at a single institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent and privacy-preserving alternative to data sharing.

OBJECTIVE

This study aims to develop and validate a privacy-preserving, federated survival support vector machine (SVM) and make it accessible for researchers to perform cross-institutional time-to-event analyses.

METHODS

We extended the survival SVM algorithm to be applicable in federated environments. We further implemented it as a FeatureCloud app, enabling it to run in the federated infrastructure provided by the FeatureCloud platform. Finally, we evaluated our algorithm on 3 benchmark data sets, a large sample size synthetic data set, and a real-world microbiome data set and compared the results to the corresponding central method.

RESULTS

Our federated survival SVM produces highly similar results to the centralized model on all data sets. The maximal difference between the model weights of the central model and the federated model was only 0.001, and the mean difference over all data sets was 0.0002. We further show that by including more data in the analysis through federated learning, predictions are more accurate even in the presence of site-dependent batch effects.

CONCLUSIONS

The federated survival SVM extends the palette of federated time-to-event analysis methods by a robust machine learning approach. To our knowledge, the implemented FeatureCloud app is the first publicly available implementation of a federated survival SVM, is freely accessible for all kinds of researchers, and can be directly used within the FeatureCloud platform.

摘要

背景

由于严格的隐私法规,集中收集分布式医疗患者数据存在问题。特别是在临床环境中,如临床事件发生时间研究,大样本量至关重要,但通常单个机构无法获取。最近有研究表明,联合学习与隐私增强技术相结合,是一种出色的隐私保护数据共享替代方案。

目的

本研究旨在开发并验证一种隐私保护的联合生存支持向量机(SVM),并使其可供研究人员进行跨机构的事件发生时间分析。

方法

我们扩展了生存SVM算法,使其适用于联合环境。我们进一步将其实现为一个FeatureCloud应用程序,使其能够在FeatureCloud平台提供的联合基础设施中运行。最后,我们在3个基准数据集、一个大样本量合成数据集和一个真实世界微生物组数据集上评估了我们的算法,并将结果与相应的集中式方法进行比较。

结果

我们的联合生存SVM在所有数据集上产生的结果与集中式模型高度相似。集中式模型和联合模型的模型权重之间的最大差异仅为0.001,所有数据集上的平均差异为0.0002。我们进一步表明,通过联合学习在分析中纳入更多数据,即使存在与站点相关的批次效应,预测也更准确。

结论

联合生存SVM通过一种强大的机器学习方法扩展了联合事件发生时间分析方法的范围。据我们所知,所实现的FeatureCloud应用程序是联合生存SVM的首个公开可用实现,可供各类研究人员免费使用,并可直接在FeatureCloud平台内使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/437e/11041494/0fe3ffd102bb/ai_v3i1e47652_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验