Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
Ecotoxicol Environ Saf. 2024 Sep 1;282:116701. doi: 10.1016/j.ecoenv.2024.116701. Epub 2024 Jul 16.
Herein, we reported the dual functions of molybdenum disulfide/sulfur-doped graphitic carbon nitride (MoS/SGCN) composite as a sensing material for electrochemical detection of 4-NP and a catalyst for 4-NP degradation. The MoS nanosheet, sulfur-doped graphitic carbon nitride (SGCN) and MoS/SGCN were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) spectroscopy and X-ray photoelectron spectroscopy (XPS). Electrochemical characterization of these materials with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1 mM K[Fe(CN)] show that the composite has the lowest charge transfer resistance and the best electrocatalytic activity. The limit of detection (LOD) and the linear range of 4-nitrophenol at MoS/SGCN modified glassy carbon electrode (MoS/SGCN/GCE) were computed as 12.8 nM and 0.1 - 2.6 μM, respectively. Also, the percentage recoveries of 4-NP in spiked tap water samples ranged from 97.8 - 99.1 %. The electroanalysis of 4-NP in the presence of notable interferons shows that the proposed electrochemical sensor features outstanding selectivity toward 4-NP. Additionally, the results of the catalytic degradation of 4-NP at MoS/SGCN show that the nanocatalyst catalyzed the transformation of 4-NP to 4-aminophenol (4-AP) with a first-order rate constant (k) estimated to be 4.2 ×10 s. The results of this study confirm that the MoS/SGCN nanocatalyst is a useful implement for electroanalytical monitoring and catalytic degradation of the hazardous 4-NP in water samples.
在此,我们报道了二硫化钼/硫掺杂石墨相氮化碳(MoS/SGCN)复合材料作为电化学检测 4-NP 的传感材料和 4-NP 降解催化剂的双重功能。通过场发射扫描电子显微镜(FESEM)、X 射线衍射(XRD)光谱和 X 射线光电子能谱(XPS)对 MoS 纳米片、硫掺杂石墨相氮化碳(SGCN)和 MoS/SGCN 进行了表征。电化学阻抗谱(EIS)和循环伏安法(CV)在 1mM K[Fe(CN)]中对这些材料的电化学表征表明,该复合材料具有最低的电荷转移电阻和最好的电催化活性。在 MoS/SGCN 修饰的玻碳电极(MoS/SGCN/GCE)上,4-硝基苯酚的检测限(LOD)和线性范围分别计算为 12.8nM 和 0.1-2.6μM。此外,在加标自来水中 4-NP 的回收率在 97.8-99.1%之间。在存在显著干扰物的情况下对 4-NP 的电化学分析表明,所提出的电化学传感器对 4-NP 具有出色的选择性。此外,在 MoS/SGCN 上催化降解 4-NP 的结果表明,纳米催化剂以估计为 4.2×10-2s-1 的一级速率常数(k)催化了 4-NP 向 4-氨基酚(4-AP)的转化。该研究结果证实,MoS/SGCN 纳米催化剂是用于水样中危险 4-NP 的电分析监测和催化降解的有用工具。